
Chair of Software Engineering

Software Architecture

Bertrand Meyer, Carlo A. Furia, Martin Nordio

ETH Zurich, February-May 2011

Lecture 5: Modularity and
Abstract Data Types

2

Three topics (over today & tomorrow)

1. Modularity

2. The theory of abstract data types

3. Object-oriented analysis

3

Reading assignment for this week

OOSC, chapters

 3: Modularity

 6: Abstract data types

 In particular pp.153-159,
 sufficient completeness

4

Modularity

General goal:

Ensure that software systems are structured into
units (modules) chosen to favor

 Extendibility

 Reusability

 ―Maintainability‖

 Other benefits of clear, well-defined architectures

5

Modularity

Some principles of modularity:

 Decomposability

 Composability

 Continuity

 Information hiding

 The open-closed principle

 The single choice principle

6

Decomposability

The method helps decompose complex problems
into subproblems

COROLLARY: Division of labor.

 Example: Top-down design method (see next).

 Counter-example: General initialization module.

7

Top-down functional design

A

B C D

E1 I1 C2 I2 I

Topmost functional abstraction

Loop Conditional

Sequence

8

Top-down design

See Niklaus Wirth, ―Program Construction by Stepwise
Refinement‖, Communications of the ACM, 14, 4, (April
1971), p 221-227.

http://www.acm.org/classics/dec95/

http://www.acm.org/classics/dec95/

9

Example: Unix shell conventions
 Program1 | Program2 | Program3

Composability

The method favors the production of software
elements that may be freely combined with each
other to produce new software

10

Direct Mapping

The method yields software systems whose
modular structure remains compatible with any
modular structure devised in the process of
modeling the problem domain

11

Few Interfaces principle

(A) (B) (C)

Every module communicates with
as few others as possible

12

Small Interfaces principle

x, y

z

If two modules communicate, they exchange as little
information as possible

13

Explicit Interfaces principle

A B

Data
item

x

modifies accesses

Whenever two modules communicate, this is clear from
the text of one or both of them

14

Continuity

Design method : Specification  Architecture

Example: Principle of Uniform Access (see next)

Counter-example: Programs with patterns after the physical
implementation of data structures.

The method ensures that small changes in
specifications yield small changes in architecture.

15

Uniform Access principle

A call such as

 your_account.balance

could use an attribute or a function

It doesn‗t matter to the client
whether you look up or compute

16

Uniform Access

balance = list_of_deposits.total – list_of_withdrawals.total

Ada, Pascal, C/C++, Java, C#: Simula, Eiffel:

a.balance a.balance

balance (a) a.balance()

list_of_deposits

list_of_withdrawals

balance

list_of_deposits

list_of_withdrawals

(A2)

(A1)

17

Uniform Access principle

Facilities managed by a module are accessible to its clients
in the same way whether implemented by computation or
by storage.

Definition: A client of a module is any module that uses its
facilities.

18

Information Hiding

Underlying question: how does one ―advertise‖ the
capabilities of a module?

Every module should be known to the outside world
through an official, ―public‖ interface.

The rest of the module‘s properties comprises its
―secrets‖.

It should be impossible to access the secrets from the
outside.

19

Information Hiding Principle

The designer of every
module must select a subset
of the module‘s properties as
the official information
about the module, to be made
available to authors of client
modules

Public

Private

20

Information hiding

Justifications:

 Continuity

 Decomposability

21

An object

start

forth

put_right before after

item index

has an interface

22

An object

start

forth

put_right before after

item index

has an implementation

23

Information hiding

start

forth

put_right before after

item index

24

The Open-Closed Principle

Modules should be open and closed

Definitions:

 Open module: May be extended.

 Closed module: Usable by clients. May be approved,
baselined and (if program unit) compiled.

The rationales are complementary:

 For closing a module (manager‘s perspective): Clients need
it now.

 For keeping modules open (developer‘s perspective): One
frequently overlooks aspects of the problem.

25

The Open-Closed principle

F A’

G

H I

A C E

D

B

26

The Single Choice principle

 Editor: set of commands (insert, delete etc.)

 Graphics system: set of figure types (rectangle,
circle etc.)

 Compiler: set of language constructs (instruction,
loop, expression etc.)

Whenever a software system must support a set
of alternatives, one and only one module in the
system should know their exhaustive list.

27

Reusability: Technical issues

General pattern for a searching routine:

has (t: TABLE; x: ELEMENT): BOOLEAN
 -- Does x appear in t ?
 local
 pos: POSITION
 do
 from
 pos := initial_position (t, x)
 until
 exhausted (t, pos) or else found (t, x, pos)
 loop
 pos := next (t, x, pos)
 end

 Result := found (t, x, pos)
 end

28

Issues for a general searching module

Type variation:

 What are the table elements?

Routine grouping:

 A searching routine is not enough: it should be
coupled with routines for table creation, insertion,
deletion etc.

Implementation variation:

 Many possible choices of data structures and
algorithms: sequential table (sorted or unsorted),
array, binary search tree, file, ...

29

Issues

Representation independence:

 Can a client request an operation such as table
search (has) without knowing what implementation is
used internally?

has (t1, y)

30

Issues

Factoring out commonality:
 How can the author of supplier modules take advantage

of commonality within a subset of the possible
implementations?

 Example: the set of sequential table implementations.

 A common routine text for has:

 has (…; x: ELEMENT): BOOLEAN
 -- Does x appear in t ?
 do
 from start until after or else found (x) loop
 forth
 end
 Result := found (x)
 end

31

Factoring out commonality

TABLE

SEQUENTIAL
_TABLE

TREE_
TABLE

HASH_
TABLE

ARRAY_
TABLE

LINKED_
TABLE

FILE_
TABLE

has

start
after
found
forth

32

Implementation variants

Array

Linked
list

File

start forth after found (x)

c := first

rewind

i := 1

c := c.right

i := i + 1

read end_of_file

c = Void

 item = x

c.item = x

i > count t [i] = x

33

Encapsulation languages (“Object-based”)

Ada, Modula-2, Oberon, CLU...

Basic idea: gather a group of routines serving a related purpose,
such as has, insert, remove etc., together with the appropriate
data structure descriptions.

This addresses the Related Routines issue.

Advantages:

 For supplier author: Get everything under one roof.
Simplifies configuration management, change of
implementation, addition of new primitives.

 For client author: Find everything at one place. Simplifies
search for existing routines, requests for extensions.

34

The concept of Abstract Data Type (ADT)

 Why use the objects?

 The need for data abstraction

 Moving away from the physical representation

 Abstract data type specifications

 Applications to software design

35

The first step

A system performs certain actions on certain data.

Basic duality:

 Functions [or: Operations, Actions]

 Objects [or: Data]

Processor

Actions Objects

36

Finding the structure

The structure of the system may be deduced from an
analysis of the functions (1) or the objects (2)

Resulting architectural style and analysis/design method:

 (1) Top-down, functional decomposition

 (2) Object-oriented

37

Arguments for using objects

Reusability: Need to reuse whole data structures, not just
operations

Extendibility, Continuity: Object categories remain more
stable over time.

Employee
information

Hours
worked

Produce
Paychecks

Paychecks

38

Object technology: A first definition

Object-oriented software construction is the
software architecture method that bases the
structure of systems on the types of objects
they handle — not on ―the‖ function they achieve.

39

The O-O designer’s motto

Ask not first WHAT the system does:

Ask WHAT it does it to!

40

Issues of object-oriented architecture

 How to find the object types

 How to describe the object types

 How to describe the relations and commonalities
between object types

 How to use object types to structure programs

41

Description of objects

Consider not a single object but a type of objects with
similar properties.

Define each type of objects not by the objects‘ physical
representation but by their behavior: the services
(FEATURES) they offer to the rest of the world.

External, not internal view: ABSTRACT DATA TYPES

42

The theoretical basis

The main issue: How to describe program objects (data
structures):

 Completely

 Unambiguously

 Without overspecifying?
 (Remember information hiding)

43

Abstract Data Types

A formal way of describing data structures

Benefits:

 Modular, precise description of a wide range of
problems

 Enables proofs

 Basis for object technology

 Basis for object-oriented requirements

44

A stack, concrete object

count

capacity

rep [count] := x
count := count + 1

1

x

x

Implementing a ―PUSH‖ operation:

Representation 1:
―Array Up‖

rep

45

A stack, concrete object

count

capacity

free
1

rep [free] := x
free := free - 1

1

x

x

x

rep [count] := x
count := count + 1

Implementing a ―PUSH‖ operation:

Representation 1:
―Array Up‖

Representation 2:
―Array Down‖

rep

rep

46

A stack, concrete object

count

rep

capacity

rep [count] := x

free
1

rep

x
cell

item

item

previous

item

previous
previous

count := count + 1

rep [free] := x
free := free - 1

create cell
cell.item := x
cell.previous := last
head := cell

1

x

Implementing a ―PUSH‖ operation:

Representation 3:
―Linked List‖

Representation 1:
―Array Up‖

Representation 2:
―Array Down‖

47

Stack: An Abstract Data Type (ADT)

Types:

 STACK [G]
 -- G : Formal generic parameter

Functions (Operations):

 put : STACK [G]  G  STACK [G]

 remove : STACK [G]  STACK [G]

 item : STACK [G]  G

 is_empty : STACK [G]  BOOLEAN

 new : STACK [G]

Partial function
(see next)

48

Using functions to model operations

put , = ()

s x s‘

49

Reminder: Partial functions

A partial function, identified here by , is a function that
may not be defined for all possible arguments.

Example from elementary mathematics:

 inverse:   , such that

 inverse (x) = 1 / x

50

The STACK ADT (continued)

Preconditions:

 remove (s : STACK [G]) require not is_empty (s)

 item (s : STACK [G]) require not is_empty (s)

Axioms: For all x : G, s : STACK [G]

 item (put (s, x)) = x

 remove (put (s, x)) = s

 is_empty (new)
 (can also be written: is_empty (new) = True)

 not is_empty (put (s, x))

 (can also be written: is_empty (put (s, x)) = False)

put , = ()

s x s‘

51

Exercises

Adapt the preceding specification of stacks (LIFO, Last-
In First-Out) to describe queues instead (FIFO).

Adapt the preceding specification of stacks to account for
bounded stacks, of maximum size capacity.

 Hint: put becomes a partial function.

52

Formal stack expressions

value =

 item (remove (put (remove (put (put

 (remove (put (put (put (new, x8), x7), x6)),

 item (remove (put (put (new, x5), x4)))),

 x2)), x1)))

53

y1 = item (s6)

s7 = put (s3, y1)

s8 = put (s7, x2)

s9 = remove (s8)

s10 = put (s9, x1)

s11 = remove (s10)

value = item (s11)

s1 = new

s2 = put (put (put (s1, x8), x7), x6)

s3 = remove (s2)

s4 = new

s5 = put (put (s4, x5), x4)

s6 = remove (s5)

Expressed differently

value = item (remove (put (remove (put (put (remove (put
(put (put (new, x8), x7), x6)), item (remove (put (put (new,
x5), x4)))), x2)), x1)))

54

Expression reduction

Stack 1

value = item (
 remove (

 put (
 remove (
 put (
 put (
 remove (
 put (put (put (new , x8), x7), x6)

),

 item (
 remove (

 put (put (new, x5), x4)
)

)

),

 x2)

),

 x1)

)

)

55

Expression reduction

Stack 1

x8

value = item (
 remove (

 put (
 remove (
 put (
 put (
 remove (
 put (put (put (new , x8), x7), x6)

),

 item (
 remove (

 put (put (new, x5), x4)
)

)

),

 x2)

),

 x1)

)

)

56

Expression reduction

Stack 1

x8

x7

value = item (
 remove (

 put (
 remove (
 put (
 put (
 remove (
 put (put (put (new , x8), x7), x6)

),

 item (
 remove (

 put (put (new, x5), x4)
)

)

),

 x2)

),

 x1)

)

)

57

Expression reduction

Stack 1

x8

x7

x6
value = item (

 remove (

 put (
 remove (
 put (
 put (
 remove (
 put (put (put (new , x8), x7), x6)

)

 , item (
 remove (

 put (put (new, x5), x4)
)

)

),

 x2)

),

 x1)

)

)

58

Expression reduction

Stack 1

x8

x7

x6
value = item (

 remove (

 put (
 remove (
 put (
 put (
 remove (
 put (put (put (new , x8), x7), x6)

) ,

 item (
 remove (

 put (put (new, x5), x4)
)

)

),

 x2)

),

 x1)

)

)

59

Expression reduction

Stack 1

x8

x7

Stack 2

value = item (
 remove (

 put (
 remove (
 put (
 put (
 remove (
 put (put (put (new , x8), x7), x6)

),

 item (
 remove (

 put (put (new , x5) , x4)
)

)

),

 x2)

),

 x1)

)

)

60

Expression reduction

Stack 2

x5

Stack 1

x8

x7

value = item (
 remove (

 put (
 remove (
 put (
 put (
 remove (
 put (put (put (new , x8), x7), x6)

),

 item (
 remove (

 put (put (new, x5) , x4)
)

)

),

 x2)

),

 x1)

)

)

61

Expression reduction

Stack 2

x5

x4

Stack 1

x8

x7

value = item (
 remove (

 put (
 remove (
 put (
 put (
 remove (
 put (put (put (new , x8), x7), x6)

),

 item (
 remove (

 put (put (new, x5), x4)
)

)

),

 x2)

),

 x1)

)

)

62

Expression reduction

Stack 2

x5

x4

Stack 1

x8

x7

value = item (
 remove (

 put (
 remove (
 put (
 put (
 remove (
 put (put (put (new , x8), x7), x6)

),

 item (
 remove (

 put (put (new, x5), x4)
)

)

),

 x2)

),

 x1)

)

)

63

Expression reduction

Stack 2

x5

Stack 1

x8

x7

value = item (
 remove (

 put (
 remove (
 put (
 put (
 remove (
 put (put (put (new , x8), x7), x6)

),

 item (
 remove (

 put (put (new, x5), x4)
)

)

),

 x2)

),

 x1)

)

)

64

Expression reduction

x8

x7

x5

x5
value = item (

 remove (

 put (
 remove (
 put (
 put (
 remove (
 put (put (put (new , x8), x7), x6)

),

 item (
 remove (

 put (put (new, x5), x4)
)

)

),

 x2)

),

 x1)

)

)

Stack 2 Stack 1

65

Expression reduction

x8

x7

x5

x2 value = item (
 remove (

 put (
 remove (
 put (
 put (
 remove (
 put (put (put (new , x8), x7), x6)

),

 item (
 remove (

 put (put (new, x5), x4)
)

)

),

 x2)

),

 x1)

)

)

66

Expression reduction

x8

x7

x5

x2 value = item (
 remove (

 put (
 remove (
 put (
 put (
 remove (
 put (put (put (new , x8), x7), x6)

),

 item (
 remove (

 put (put (new, x5), x4)
)

)

),

 x2)

) ,

 x1)

)

)

67

Expression reduction

x8

x7

x5

x1 value = item (
 remove (

 put (
 remove (
 put (
 put (
 remove (
 put (put (put (new , x8), x7), x6)

),

 item (
 remove (

 put (put (new, x5), x4)
)

)

),

 x2)

),

 x1)

)

)

68

Expression reduction

x8

x7

x5

x1
value = item (

 remove (

 put (
 remove (
 put (
 put (
 remove (
 put (put (put (new , x8), x7), x6)

),

 item (
 remove (

 put (put (new, x5), x4)
)

)

),

 x2)

),

 x1)

)

)

69

Expression reduction

x8

x7

x5
value = item (

 remove (

 put (
 remove (
 put (
 put (
 remove (
 put (put (put (new , x8), x7), x6)

),

 item (
 remove (

 put (put (new, x5), x4)
)

)

),

 x2)

),

 x1)

)

)

70

y1 = item (s6)

s7 = put (s3, y1)

s8 = put (s7, x2)

s9 = remove (s8)

s10 = put (s9, x1)

s11 = remove (s10)

value = item (s11)

s1 = new

s2 = put (put (put (s1, x8), x7), x6)

s3 = remove (s2)

s4 = new

s5 = put (put (s4, x5), x4)

s6 = remove (s5)

Expressed differently

value = item (remove (put (remove (put (put (remove (put
(put (put (new, x8), x7), x6)), item (remove (put (put (new,
x5), x4)))), x2)), x1)))

71

An operational view of the expression

 value = item (remove (put (remove (put (put (remove (put (put (put
(new, x8), x7), x6)), item (remove (put (put (new, x5), x4)))), x2)), x1)))

x8

x7

x6

x8

x7

s2 s3
(empty)
s1

x5

x4

s5
(empty)
s4

x5

s6

y1

x8

x7

x5

s7 (s9, s11)

x8

x7

x5

s8

x2

x8

x7

x5

s10

x1

72

Sufficient completeness

Three forms of functions in the specification of an ADT T :

 Creators:
 OTHER  T e.g. new

 Queries:
 T ...  OTHER e.g. item, empty

 Commands:

 T ...  T e.g. put, remove

Sufficiently Complete specification

An ADT specification with axioms that make it possible
to reduce any correct ―Query Expression‖ of the form
 f (...)

where f is a query, to a form not involving T

73

Well-formed and correct expression

An expression built from an ADT is well-formed if all the
function applications it involves use the right number of
arguments of the right type, each argument being
(recursively) well-formed

 Examples:

 put (x) is not well-formed

 put (new, x) is well-formed

 remove (new) is well-formed

An expression is correct if (1) it is well-formed (2) the
arguments to all function applications satisfy the
respective preconditions and (3) all these arguments are
(recursively) correct.

74

Is the stack specification sufficiently complete?

Types

 STACK [G]

Functions

 put: STACK [G]  G  STACK [G]

 remove: STACK [G]  STACK [G]

 item: STACK [G]  G

 empty: STACK [G]  BOOLEAN

 new: STACK [G]

75

The STACK ADT (continued)

Preconditions:

 remove (s : STACK [G]) require not empty (s)

 item (s : STACK [G]) require not empty (s)

Axioms: For all x : G, s : STACK [G]

 item (put (s, x)) = x

 remove (put (s, x)) = s

 empty (new)
 (can also be written: empty (new) = True)

 not empty (put (s, x))

 (can also be written: empty (put (s, x)) = False)

put , = ()

s x s‘

76

Proving sufficient completeness

Let us say that an ADT expression f for the ADT
STACK [X] is reducible if the axioms make it possible to
determine the value of f in terms of the types X and
BOOLEAN only

To prove sufficient completeness for the stack
specification, we must prove that a correct expression f
of the form

 item (e) or

 empty (e)

is reducible

 (to terms of values X and BOOLEAN respectively)

77

Proof sketch

We prove that a correct expression f = item (e) is
reducible

 (the case of empty is left as an exercise)

We work by induction on the number of parenthesis pairs
in f

Lemma:

 A correct expression of the form

 remove (g)

 has a subexpression of the form

 remove (put (h, x))

78

“Complete” requirements (from the Requirements lecture)

Complete with respect to what?

Definition from IEEE standard (see next) :

 An SRS (Software Requirements Specification) is complete if, and
only if, it includes the following elements:

 All significant requirements, whether relating to functionality,
performance, design constraints, attributes, or external
interfaces. In particular any external requirements imposed by
a system specification should be acknowledged and treated.

 Definition of the responses of the software to all realizable
classes of input data in all realizable classes of situations.
Note that it is important to specify the responses to both
valid and invalid input values.

 Full labels and references to all figures, tables, and diagrams
in the SRS and definition of all terms and units of measure.

79

Completeness (from the Requirements lecture)

Completeness cannot be ―completely‖ defined

But (taking advantage of the notion of sufficient
completeness for abstract data types) we can cross-check:

 Commands x Queries

to verify that every effect is defined

80

ADTs and software architecture

Abstract data types provide an ideal basis for modularizing
software.

 Build each module as an implementation of an ADT:

 Implements a set of objects with same interface

 Interface is defined by a set of operations (the
ADT‘s functions) constrained by abstract properties
(its axioms and preconditions).

 The module consists of:

 A representation for the ADT

 An implementation for each of its operations

 Possibly, auxiliary operations

81

Implementing an ADT

Three components:

(E1) The ADT‘s specification: functions,

 axioms, preconditions
 (Example: stacks)

(E2) Some representation choice
 (Example: <rep, count >)

 (E3) A set of subprograms (routines) and
 attributes, each implementing one of the
 functions of the ADT specification (E1)
 in terms of chosen representation (E2)
 (Example: routines put, remove, item, empty, new)

82

A choice of stack representation

count

rep

(array_up)

capacity ―Push‖ operation:

count := count + 1

rep [count] := x

1

83

Information hiding

The designer of every
module must select a subset
of the module‘s properties as
the official information
about the module, to be made
available to authors of client
modules

Public

Private

84

Applying ADTs to information hiding

Public part:

 ADT specification
 (E1)

 Secret part:

 Choice of representation
 (E2)

 Implementation of
 functions by features
 (E3)

85

Object technology: A first definition

Object-oriented software construction is the
software architecture method that bases the
structure of systems on the types of objects
they handle — not on ―the‖ function they achieve

86

A more precise definition

Object-oriented software construction is the
construction of software systems as structured
collections of (possibly partial) abstract data
type implementations

87

The fundamental structure: the class

Merging of the notions of module and type:

 Module = Unit of decomposition: set of services

 Type = Description of a set of run-time objects
 (―instances‖ of the type)

The connection:

 The services offered by the class, viewed as a
module, are the operations available on the instances
of the class, viewed as a type.

88

Class relations

Two relations:

 Client

 Heir

89

Overall system structure

 CHUNK

word_count
justified

add_word
remove_word

justify
unjustify

length
font

FIGURE

PARAGRAPH WORD

space_before

space_after

add_space_before

add_space_after

set_font
hyphenate_on
hyphenate_off

QUERIES COMMANDS

FEATURES

Inheritance

Client

90

Bounded stacks

Types:
 BSTACK [G]

Functions (Operations):
 put : BSTACK [G]  G  BSTACK [G]
 remove : BSTACK [G]  BSTACK [G]
 item : BSTACK [G]  G
 empty : BSTACK [G]  BOOLEAN
 new : BSTACK [G]
 capacity : BSTACK [G]  INTEGER
 count : BSTACK [G]  INTEGER

 full : BSTACK [G]  BOOLEAN

91
91

Television station example

class SCHEDULE feature

 segments: LIST [SEGMENT]

end

Source: OOSC

92
92

Schedules

note

 description :
 ― 24-hour TV schedules‖

deferred class SCHEDULE feature

 segments: LIST [SEGMENT]
 -- Successive segments

 deferred
 end

 air_time : DATE is
 -- 24-hour period
 -- for this schedule
 deferred
 end

 set_air_time (t : DATE)
 -- Assign schedule to

 -- be broadcast at time t.

 require

 t.in_future

 deferred

 ensure

 air_time = t

 end

 print

 -- Produce paper version.
 deferred

 end

end

93
93

Contracts

Feature precondition: condition imposed on the rest of the
world

Feature postcondition: condition guaranteed to the rest of
the world

Class invariant: Consistency constraint maintained
throughout on all instances of the class

94
94

Why contracts

Specify semantics, but abstractly!

(Remember basic dilemma of requirements:

 Committing too early to an implementation
 Overspecification!

 Missing parts of the problem
 Underspecification!

)

95
95

Segment

note

 description :
 "Individual fragments of a schedule "

deferred class SEGMENT feature

 schedule : SCHEDULE deferred end
 -- Schedule to which
 -- segment belongs

 index : INTEGER deferred end
 -- Position of segment in
 -- its schedule

 starting_time, ending_time :

 INTEGER deferred end
 -- Beginning and end of
 -- scheduled air time

 next: SEGMENT deferred end
 -- Segment to be played
 -- next, if any

sponsor : COMPANY deferred end
 -- Segment‘s principal sponsor

rating : INTEGER deferred end
 -- Segment‘s rating (for
 -- children‘s viewing etc.)

  Commands such as change_next,
set_sponsor, set_rating omitted 

Minimum_duration : INTEGER = 30
-- Minimum length of segments,
-- in seconds

Maximum_interval : INTEGER = 2
-- Maximum time between two
-- successive segments, in seconds

96
96

Segment (continued)

invariant

 in_list: (1 <= index) and (index <= schedule.segments.count)

 in_schedule: schedule.segments.item (index) = Current

 next_in_list: (next /= Void) implies

 (schedule.segments.item (index + 1) = next)

 no_next_iff_last: (next = Void) = (index = schedule.segments.count)

 non_negative_rating: rating >= 0

 positive_times: (starting_time > 0) and (ending_time > 0)

 sufficient_duration:
 ending_time – starting_time >= Minimum_duration

 decent_interval :
 (next.starting_time) - ending_time <= Maximum_interval

end

97
97

Commercial

note

 description: "Advertizing segment "
deferred class COMMERCIAL inherit
 SEGMENT
 rename sponsor as advertizer end
feature

 primary: PROGRAM deferred
 -- Program to which this
 -- commercial is attached

 primary_index: INTEGER deferred
 -- Index of primary

set_primary (p: PROGRAM)

 -- Attach commercial to p.

 require

 program_exists: p /= Void

 same_schedule: p,schedule = schedule

 before:
 p.starting_time <= starting_time

 deferred

 ensure

 index_updated:
 primary_index = p.index

 primary_updated: primary = p
 end

invariant

 meaningful_primary_index: primary_index = primary.index

 primary_before: primary.starting_time <= starting_time

 acceptable_sponsor: advertizer.compatible (primary.sponsor)

 acceptable_rating: rating <= primary.rating

end

98
98

Diagrams: UML, BON

Text-Graphics
Equivalence

99
99

O-O analysis process

Identify abstractions

 New

 Reused

Describe abstractions through interfaces, with contracts

Look for more specific cases: use inheritance

Look for more general cases: use inheritance, simplify

Iterate on suppliers

At all stages keep structure simple and look for applicable
contracts

100
100

Your turn! Describe this in an O-O way

Consider a small library database
with the following transactions:

1. Check out a copy of a book.
Return a copy of a book.

2. Add a copy of a book to the
library. Remove a copy of a
book from the library.

3. Get the list of books by a
particular author or in a
particular subject area.

4. Find out the list of books
currently checked out by a
particular borrower.

5. Find out what borrower last
checked out a particular copy
of a book.

There are two types of users: staff
users and ordinary borrowers.

Transactions 1, 2, 4, and 5 are
restricted to staff users, except
that ordinary borrowers can
perform transaction 4 to find
out the list of books currently
borrowed by themselves. The
database must also satisfy the
following constraints:

All copies in the library must
be available for checkout or
be checked out.

No copy of the book may be
both available and checked
out at the same time.

A borrower may not have
more than a predefined
number of books checked out
at one time.

101
101

Practical advice

 Take advantage of O-O techniques
from the requirements stage on

 Use contracts to express semantic

properties

102

Practical advice

 Write ADT specifications for
delicate parts of the system
requirements

103

Bounded stacks (continued)

Preconditions:
 remove (s : BSTACK [G]) require not empty (s)
 item (s : BSTACK [G]) require not empty (s)
 put (s : BSTACK [G]) require not full (s)

Axioms: For all x : G, s : BSTACK [G]
 item (put (s, x)) = x
 remove (put (s, x)) = s
 empty (new)
 not empty (put (s, x))
 full = (count = capacity)
 count (new) = 0
 count (put (s, x)) = count (s) + 1
 count (remove (s)) = count (s) - 1

