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Three topics (over today & tomorrow) 

1. Modularity 

 

2. The theory of abstract data types 

 

3. Object-oriented analysis 
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Reading assignment for this week 

OOSC, chapters 

 3: Modularity 

  6: Abstract data types 
 
   In particular pp.153-159, 
   sufficient completeness 



4 

Modularity 

General goal: 

 

Ensure that software systems are structured into 
units (modules) chosen to favor 

 Extendibility 

 Reusability 

 ―Maintainability‖ 

 Other benefits of clear, well-defined architectures 
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Modularity 

Some principles of modularity: 

 Decomposability  

 Composability  

 Continuity  

 Information hiding  

 The open-closed principle  

 The single choice principle 

 



6 

Decomposability 

The method helps decompose complex problems 
into subproblems 

COROLLARY: Division of labor.  

 Example: Top-down design method (see next).  

 Counter-example: General initialization module.  
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Top-down functional design 

A 

B C D 

E1  I1 C2 I2 I 

Topmost functional abstraction 

Loop Conditional 

Sequence 
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Top-down design 

See Niklaus Wirth, ―Program Construction by Stepwise 
Refinement‖, Communications of the ACM, 14, 4, (April 
1971), p 221-227. 

 

http://www.acm.org/classics/dec95/ 

 

http://www.acm.org/classics/dec95/
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Example: Unix shell conventions     
 Program1 | Program2 | Program3 

Composability 

The method favors the production of software 
elements that may be freely combined with each 
other to produce new software 
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Direct Mapping 

The method yields software systems whose 
modular structure remains compatible with any 
modular structure devised in the process of 
modeling the problem domain 
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Few Interfaces principle 

(A) (B) (C) 

Every module communicates with 
as few others as possible 
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Small Interfaces principle 

x, y 

z 

If two modules communicate, they exchange as little 
information as possible 
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Explicit Interfaces principle 

A B 

Data 
item 

x 

modifies accesses 

Whenever two modules communicate, this is clear from 
the text of one or both of them 
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Continuity 

 

 
 

Design method : Specification    Architecture  

 

 

 

 

 

 

Example: Principle of Uniform Access (see next) 

Counter-example: Programs with patterns after the physical 
implementation of data structures. 

The method ensures that small changes in 
specifications yield small changes in architecture. 
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Uniform Access principle  

A call such as 

   your_account.balance 

 

could use an attribute or a function 
    

It doesn‗t matter to the client 
whether you look up or compute 
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Uniform Access 

balance = list_of_deposits.total – list_of_withdrawals.total 

 

 

 
 

 

 

 

 
Ada, Pascal, C/C++, Java, C#:  Simula, Eiffel: 

a.balance    a.balance 

balance (a )     a.balance() 

list_of_deposits 

list_of_withdrawals 

balance 

list_of_deposits 

list_of_withdrawals 

(A2) 

(A1) 
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Uniform Access principle 

Facilities managed by a module are accessible to its clients 
in the same way whether implemented by computation or 
by storage. 

Definition: A client of a module is any module that uses its 
facilities. 
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Information Hiding 

Underlying question: how does one ―advertise‖ the 
capabilities of a module?  
   

Every module should be known to the outside world 
through an official, ―public‖ interface.  

The rest of the module‘s properties comprises its 
―secrets‖.  

It should be impossible to access the secrets from the 
outside.  
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Information Hiding Principle 

The designer of every 
module must select a subset 
of the module‘s properties as 
the official information 
about the module, to be made 
available to authors of client 
modules 

Public 

Private 
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Information hiding 

Justifications: 

 Continuity 

 Decomposability 
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An object 

start 

forth 

put_right before after 

item index 

has an interface 
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An object 

start 

forth 

put_right before after 

item index 

has an implementation 



23 

Information hiding 

start 

forth 

put_right before after 

item index 
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The Open-Closed Principle 

Modules should be open and closed 

Definitions:  

 Open module: May be extended.  

 Closed module: Usable by clients. May be approved, 
baselined and (if program unit) compiled.  

 

The rationales are complementary:  

 For closing a module (manager‘s perspective): Clients need 
it now.  

 For keeping modules open (developer‘s perspective): One 
frequently overlooks aspects of the problem. 
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The Open-Closed principle 

F A’ 

G 

H  I 

A C E 

D 

B 
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The Single Choice principle 

 Editor: set of commands (insert, delete etc.)  

 Graphics system: set of figure types (rectangle, 
circle etc.)  

 Compiler: set of language constructs (instruction, 
loop, expression etc.) 

Whenever a software system must support a set 
of alternatives, one and only one module in the 
system should know their exhaustive list. 
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Reusability: Technical issues 

General pattern for a searching routine: 
 
has (t: TABLE; x:  ELEMENT  ): BOOLEAN 
  -- Does x appear in t ? 
 local 
  pos: POSITION 
 do 
  from 
   pos := initial_position (t, x )  
  until 
   exhausted (t, pos ) or else found (t, x, pos ) 
  loop 
   pos := next (t, x, pos ) 
  end 
 
  Result := found (t, x, pos ) 
 end 
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Issues for a general searching module 

Type variation:  

 What are the table elements?  
 

Routine grouping:  

 A searching routine is not enough: it should be 
coupled with routines for table creation, insertion, 
deletion etc.  

 

Implementation variation: 

 Many possible choices of data structures and 
algorithms: sequential table (sorted or unsorted), 
array, binary search tree, file, ...  
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Issues 

Representation independence:  
 

 Can a client request an operation such as table 
search (has) without knowing what implementation is 
used internally?  

 

has (t1, y ) 
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Issues 

Factoring out commonality:  
 How can the author of supplier modules take advantage 

of commonality within a subset of the possible 
implementations?  
 

 Example: the set of sequential table implementations.  

 A common routine text for has:  
 

  
 has ( …; x:  ELEMENT  ): BOOLEAN 
  -- Does x appear in t ?  
  do 
  from start until after or else found (x ) loop 
   forth 
  end 
  Result := found (x ) 
  end 
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Factoring out commonality 

TABLE 

SEQUENTIAL
_TABLE 

TREE_
TABLE 

HASH_ 
TABLE 

ARRAY_
TABLE 

LINKED_
TABLE 

FILE_ 
TABLE 

has 

start 
after 
found 
forth 
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Implementation variants 

Array 

Linked 
list 

File 

start forth after found (x) 

c := first 

rewind 

i := 1 

c := c.right 

i := i + 1 

read end_of_file 

c = Void 

  item  = x 

c.item = x 

i > count t [i ] = x 
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Encapsulation languages (“Object-based”) 

Ada, Modula-2, Oberon, CLU...  
 

Basic idea: gather a group of routines serving a related purpose, 
such as has, insert, remove etc., together with the appropriate 
data structure descriptions.  
 

This addresses the Related Routines issue.  
 

Advantages:  
 

 For supplier author: Get everything under one roof. 
Simplifies configuration management, change of 
implementation, addition of new primitives.  

 

 For client author: Find everything at one place. Simplifies 
search for existing routines, requests for extensions.  
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The concept of Abstract Data Type (ADT) 

 Why use the objects?  

 The need for data abstraction  

 Moving away from the physical representation  

 Abstract data type specifications  

 Applications to software design  
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The first step 

A system performs certain actions on certain data.  

Basic duality:  

 Functions [or: Operations, Actions]  

 Objects [or: Data] 

Processor 

Actions Objects 
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Finding the structure 

The structure of the system may be  deduced from an 
analysis of the functions (1) or the objects (2)  

 

Resulting architectural style and analysis/design method:  

 

 (1) Top-down, functional decomposition  

 (2) Object-oriented 
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Arguments for using objects 

Reusability: Need to reuse whole data structures, not just 
operations  

Extendibility, Continuity: Object categories remain more 
stable over time. 

Employee 
information 

Hours 
worked 

Produce 
Paychecks 

Paychecks 
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Object technology: A first definition 

Object-oriented software construction is the 
software architecture method that bases the 
structure of systems on the types of objects 
they handle — not on ―the‖ function they achieve. 
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The O-O designer’s motto 

Ask not first WHAT the system does: 
 
Ask WHAT it does it to! 
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Issues of object-oriented architecture 

 How to find the object types 

 How to describe the object types  

 How to describe the relations and commonalities 
between object types 

 How to use object types to structure programs 
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Description of objects 

Consider not a single object but a type of objects with 
similar properties.  

 

Define each type of objects not by the objects‘ physical 
representation but by their behavior: the services 
(FEATURES) they offer to the rest of the world.  

 

External, not internal view: ABSTRACT DATA TYPES 
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The theoretical basis 

The main issue: How to describe program objects (data 
structures): 

 

 Completely  
 

 Unambiguously  
 

 Without overspecifying? 
    (Remember information hiding) 
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Abstract Data Types 

A formal way of describing data structures 

Benefits: 

 Modular, precise description of a wide range of 
problems 

 Enables proofs 

 Basis for object technology 

 Basis for object-oriented requirements 



44 

A stack, concrete object 

count 

capacity 

rep [count] := x 
count := count + 1 

1 

x 

x 

Implementing a ―PUSH‖ operation: 

Representation 1: 
―Array Up‖ 

rep 
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A stack, concrete object 

count 

capacity 

free 
1 

rep [free] := x 
free := free - 1 

1 

x 

x 

x 

rep [count] := x 
count := count + 1 

Implementing a ―PUSH‖ operation: 

Representation 1: 
―Array Up‖ 

Representation 2: 
―Array Down‖ 

rep 

rep 
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A stack, concrete object 

count 

rep 

capacity 

rep [count] := x 

free 
1 

rep 

x 
cell 

item 

item 

previous 

item 

previous 
previous 

count := count + 1 

rep [free] := x 
free := free - 1 

create cell 
cell.item := x 
cell.previous := last 
head := cell 

1 

x 

Implementing a ―PUSH‖ operation: 

Representation 3: 
―Linked List‖ 

Representation 1: 
―Array Up‖ 

Representation 2: 
―Array Down‖ 
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Stack: An Abstract Data Type (ADT) 

Types: 

 STACK [G ]  
         -- G : Formal generic parameter 
  

Functions (Operations): 

 put : STACK [G ]  G  STACK [G ]  

 remove : STACK [G ]  STACK [G ]  

 item : STACK [G ]  G  

 is_empty : STACK [G ]  BOOLEAN  

 new : STACK [G ] 

Partial function 
(see next) 
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Using functions to model operations 

put , = ( ) 

s x s‘ 
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Reminder: Partial functions 

A partial function, identified here by , is a function that 
may not be defined for all possible arguments. 

 

Example from elementary mathematics:  

 inverse:   , such that 

 

     inverse (x ) = 1 / x 
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The STACK ADT (continued) 

Preconditions:  

 remove (s : STACK [G ]) require not is_empty (s )  

 item (s : STACK [G ]) require not is_empty (s )  

 

Axioms: For all x : G, s : STACK [G ]  

 item (put (s, x )) = x  

 remove (put (s, x )) = s  

 is_empty (new)  
   (can also be written: is_empty (new) = True) 

 not is_empty (put (s, x ))  

   (can also be written: is_empty (put (s, x)) = False) 

put , = ( ) 

s x s‘ 
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Exercises 

Adapt the preceding specification of stacks (LIFO, Last-
In First-Out) to describe queues instead (FIFO).  

 

Adapt the preceding specification of stacks to account for 
bounded stacks, of maximum size capacity.  

 Hint: put becomes a partial function.  
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Formal stack expressions 

value = 

 item (remove (put (remove (put (put 

  (remove (put (put (put (new, x8 ), x7  ), x6 )), 

  item (remove (put (put (new, x5 ), x4 )))), 

  x2 )), x1 ))) 
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y1 = item (s6 ) 

s7 = put (s3, y1 ) 

s8 = put (s7, x2 ) 

s9 = remove (s8 ) 

s10 = put (s9, x1 ) 

s11 = remove (s10 ) 

value = item (s11 ) 

s1 = new 

s2 = put (put (put (s1, x8 ), x7 ), x6 ) 

s3 = remove (s2 ) 

s4 = new 

s5 = put (put (s4, x5 ), x4 ) 

s6 = remove (s5 ) 

Expressed differently 

value = item (remove (put (remove (put (put (remove (put 
(put (put (new, x8 ), x7), x6)), item (remove (put (put (new, 
x5 ), x4 )))), x2 )), x1 ))) 
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Expression reduction 

Stack 1 

value = item ( 
        remove ( 

           put ( 
                   remove ( 
                 put ( 
                 put ( 
                      remove ( 
                           put (put (put (  new , x8 ), x7 ), x6 ) 

                        ), 

        item     ( 
           remove ( 

                 put (put (new, x5 ), x4 ) 
               ) 

             ) 

                              ),  

                         x2 ) 

                       ), 

                    x1 ) 

        ) 

   ) 



55 

Expression reduction 

Stack 1 

x8 

value = item ( 
        remove ( 

           put ( 
                   remove ( 
                 put ( 
                 put ( 
                      remove ( 
                           put (put ( put (  new , x8  ), x7 ), x6 ) 

                        ), 

        item     ( 
           remove ( 

                 put (put (new, x5 ), x4 ) 
               ) 

             ) 

                              ),  

                         x2 ) 

                       ), 

                    x1 ) 

        ) 

   ) 
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Expression reduction 

Stack 1 

x8 

x7 

value = item ( 
        remove ( 

           put ( 
                   remove ( 
                 put ( 
                 put ( 
                      remove ( 
                           put (put (put (  new , x8 ), x7 ), x6 ) 

                        ), 

        item     ( 
           remove ( 

                 put (put (new, x5 ), x4 ) 
               ) 

             ) 

                              ),  

                         x2 ) 

                       ), 

                    x1 ) 

        ) 

   ) 
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Expression reduction 

Stack 1 

x8 

x7 

x6 
value = item ( 

        remove ( 

           put ( 
                   remove ( 
                 put ( 
                 put ( 
                      remove ( 
                           put (put (put (  new , x8 ), x7 ), x6 ) 

                        ) 

        , item     ( 
           remove ( 

                 put (put (new, x5 ), x4 ) 
               ) 

             ) 

                              ),  

                         x2 ) 

                       ), 

                    x1 ) 

        ) 

   ) 
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Expression reduction 

Stack 1 

x8 

x7 

x6 
value = item ( 

        remove ( 

           put ( 
                   remove ( 
                 put ( 
                 put ( 
                      remove ( 
                           put (put (put (  new , x8 ), x7 ), x6 ) 

                        ) , 

        item     ( 
           remove ( 

                 put (put (new, x5 ), x4 ) 
               ) 

             ) 

                              ),  

                         x2 ) 

                       ), 

                    x1 ) 

        ) 

   ) 
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Expression reduction 

Stack 1 

x8 

x7 

Stack 2 

value = item ( 
        remove ( 

           put ( 
                   remove ( 
                 put ( 
                 put ( 
                      remove ( 
                           put (put (put (  new , x8 ), x7 ), x6 ) 

                        ), 

        item     ( 
           remove ( 

                 put ( put ( new , x5 ) , x4  ) 
               ) 

             ) 

                              ),  

                         x2 ) 

                       ), 

                    x1 ) 

        ) 

   ) 
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Expression reduction 

Stack 2 

x5 

Stack 1 

x8 

x7 

value = item ( 
        remove ( 

           put ( 
                   remove ( 
                 put ( 
                 put ( 
                      remove ( 
                           put (put (put (  new , x8 ), x7 ), x6 ) 

                        ), 

        item     ( 
           remove ( 

                 put ( put (new, x5 ) , x4 ) 
               ) 

             ) 

                              ),  

                         x2 ) 

                       ), 

                    x1 ) 

        ) 

   ) 
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Expression reduction 

Stack 2 

x5 

x4 

Stack 1 

x8 

x7 

value = item ( 
        remove ( 

           put ( 
                   remove ( 
                 put ( 
                 put ( 
                      remove ( 
                           put (put (put (  new , x8 ), x7 ), x6 ) 

                        ), 

        item     ( 
           remove ( 

                 put (put ( new, x5  ), x4 ) 
               ) 

             ) 

                              ),  

                         x2 ) 

                       ), 

                    x1 ) 

        ) 

   ) 
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Expression reduction 

Stack 2 

x5 

x4 

Stack 1 

x8 

x7 

value = item ( 
        remove ( 

           put ( 
                   remove ( 
                 put ( 
                 put ( 
                      remove ( 
                           put (put (put (  new , x8 ), x7 ), x6 ) 

                        ), 

        item     ( 
           remove ( 

                 put (put (new, x5 ), x4 ) 
               ) 

             ) 

                              ),  

                         x2 ) 

                       ), 

                    x1 ) 

        ) 

   ) 
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Expression reduction 

Stack 2 

x5 

Stack 1 

x8 

x7 

value = item ( 
        remove ( 

           put ( 
                   remove ( 
                 put ( 
                 put ( 
                      remove ( 
                           put (put (put (  new , x8 ), x7 ), x6 ) 

                        ), 

        item     ( 
           remove ( 

                 put (put (new, x5 ), x4 ) 
               ) 

             ) 

                              ),  

                         x2 ) 

                       ), 

                    x1 ) 

        ) 

   ) 
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Expression reduction 

x8 

x7 

x5 

x5 
value = item ( 

        remove ( 

           put ( 
                   remove ( 
                 put ( 
                 put ( 
                      remove ( 
                           put (put (put (  new , x8 ), x7 ), x6 ) 

                        ), 

        item     ( 
           remove ( 

                 put (put (new, x5 ), x4 ) 
               ) 

             ) 

                              ),  

                         x2 ) 

                       ), 

                    x1 ) 

        ) 

   ) 

Stack 2 Stack 1 
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Expression reduction 

x8 

x7 

x5 

x2 value = item ( 
        remove ( 

           put ( 
                   remove ( 
                 put ( 
                 put ( 
                      remove ( 
                           put (put (put (  new , x8 ), x7 ), x6 ) 

                        ), 

        item     ( 
           remove ( 

                 put (put (new, x5 ), x4 ) 
               ) 

             ) 

                              ),  

                         x2  ) 

                       ), 

                    x1 ) 

        ) 

   ) 
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Expression reduction 

x8 

x7 

x5 

x2 value = item ( 
        remove ( 

           put ( 
                   remove ( 
                 put ( 
                 put ( 
                      remove ( 
                           put (put (put (  new , x8 ), x7 ), x6 ) 

                        ), 

        item     ( 
           remove ( 

                 put (put (new, x5 ), x4 ) 
               ) 

             ) 

                              ),  

                         x2 ) 

                       ) , 

                    x1 ) 

        ) 

   ) 
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Expression reduction 

x8 

x7 

x5 

x1 value = item ( 
        remove ( 

           put ( 
                   remove ( 
                 put ( 
                 put ( 
                      remove ( 
                           put (put (put (  new , x8 ), x7 ), x6 ) 

                        ), 

        item     ( 
           remove ( 

                 put (put (new, x5 ), x4 ) 
               ) 

             ) 

                              ),  

                         x2 ) 

                       ), 

                    x1   ) 

        ) 

   ) 
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Expression reduction 

x8 

x7 

x5 

x1 
value = item ( 

        remove ( 

           put ( 
                   remove ( 
                 put ( 
                 put ( 
                      remove ( 
                           put (put (put (  new , x8 ), x7 ), x6 ) 

                        ), 

        item     ( 
           remove ( 

                 put (put (new, x5 ), x4 ) 
               ) 

             ) 

                              ),  

                         x2 ) 

                       ), 

                    x1 ) 

        ) 

   ) 
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Expression reduction 

x8 

x7 

x5 
value =  item  ( 

        remove ( 

           put ( 
                   remove ( 
                 put ( 
                 put ( 
                      remove ( 
                           put (put (put (  new , x8 ), x7 ), x6 ) 

                        ), 

        item     ( 
           remove ( 

                 put (put (new, x5 ), x4 ) 
               ) 

             ) 

                              ),  

                         x2 ) 

                       ), 

                    x1 ) 

        ) 

   ) 
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y1 = item (s6 ) 

s7 = put (s3, y1 ) 

s8 = put (s7, x2 ) 

s9 = remove (s8 ) 

s10 = put (s9, x1 ) 

s11 = remove (s10 ) 

value = item (s11 ) 

s1 = new 

s2 = put (put (put (s1, x8 ), x7 ), x6 ) 

s3 = remove (s2 ) 

s4 = new 

s5 = put (put (s4, x5 ), x4 ) 

s6 = remove (s5 ) 

Expressed differently 

value = item (remove (put (remove (put (put (remove (put 
(put (put (new, x8 ), x7), x6)), item (remove (put (put (new, 
x5 ), x4 )))), x2 )), x1 ))) 
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An operational view of the expression 

 
 
 
 
 
 
 
 

  

  

 

 value = item (remove (put (remove (put (put (remove (put (put (put 
(new, x8 ), x7 ), x6)), item (remove (put (put (new, x5 ), x4 )))), x2 )), x1 ))) 

x8 

x7 

x6 

x8 

x7 

s2 s3 
(empty) 
s1 

x5 

x4 

s5 
(empty) 
s4 

x5 

s6 

y1 

x8 

x7 

x5 

s7 (s9, s11) 

x8 

x7 

x5 

s8 

x2 

x8 

x7 

x5 

s10 

x1 
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Sufficient completeness 

Three forms of functions in the specification of an ADT T :  

 Creators: 
  OTHER  T   e.g. new  

 Queries: 
  T ...  OTHER  e.g. item, empty  

 Commands:  

   T ...  T    e.g. put, remove 

Sufficiently Complete specification 

An ADT specification with axioms that make it possible 
to reduce any correct ―Query Expression‖ of the form 
   f (...) 
   

where f is a query, to a form not involving T 
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Well-formed and correct expression 

An expression built from an ADT is well-formed if all the 
function applications it involves use the right number of 
arguments of the right type, each argument being 
(recursively) well-formed 

 Examples: 

  put (x) is not well-formed 

  put (new, x) is well-formed 

  remove (new) is well-formed 

 

An expression is correct if (1) it is well-formed (2) the 
arguments to all function applications satisfy the 
respective preconditions and (3) all these arguments are 
(recursively) correct. 
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Is the stack specification sufficiently complete? 

Types 

 STACK [G]  

 
  

Functions 

 put: STACK [G]  G  STACK [G]  

 remove: STACK [G]  STACK [G]  

 item: STACK [G]  G  

 empty: STACK [G]  BOOLEAN  

 new: STACK [G] 
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The STACK ADT (continued) 

Preconditions:  

 remove (s : STACK [G ]) require not empty (s )  

 item (s : STACK [G ]) require not empty (s )  

 

Axioms: For all x : G, s : STACK [G ]  

 item (put (s, x )) = x  

 remove (put (s, x )) = s  

 empty (new)  
    (can also be written: empty (new) = True) 

 not empty (put (s, x ))  

   (can also be written: empty (put (s, x)) = False) 

put , = ( ) 

s x s‘ 
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Proving sufficient completeness 

Let us say that an ADT expression f for the ADT  
STACK  [X] is reducible if the axioms make it possible to 
determine the value of f in terms of the types X and 
BOOLEAN only 

 

To prove sufficient completeness for the stack 
specification, we must prove that a correct expression f 
of the form 

 

 item (e)     or 

 empty (e) 

 

is reducible 

 (to terms of values X and BOOLEAN respectively) 
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Proof sketch 

We prove that a correct expression f = item (e) is 
reducible 

  (the case of empty is left as an exercise) 

 

We work by induction on the number of parenthesis pairs 
in f 

 

Lemma: 

 A correct expression of the form  

  remove (g) 

 has a subexpression of the form 

  remove (put (h, x)) 
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“Complete” requirements (from the Requirements lecture) 

Complete with respect to what? 

 

Definition from IEEE standard (see next) : 

 

   An SRS (Software Requirements Specification) is complete if, and 
only if, it includes the following elements: 

 All significant requirements, whether relating to functionality, 
performance, design constraints, attributes, or external 
interfaces. In particular any external requirements imposed by 
a system specification should be acknowledged and treated. 

 Definition of the responses of the software to all realizable 
classes of input data in all realizable classes of situations. 
Note that it is important to specify the responses to both 
valid and invalid input values. 

 Full labels and references to all figures, tables, and diagrams 
in the SRS and definition of all terms and units of measure. 
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Completeness   (from the Requirements lecture) 

Completeness cannot be ―completely‖ defined 

 

But (taking advantage of the notion of sufficient 
completeness for abstract data types) we can cross-check: 

 Commands x Queries 

 

to verify that every effect is defined 
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ADTs and software architecture 

Abstract data types provide an ideal basis for modularizing 
software.  

 Build each module as an implementation of an ADT: 

 Implements a set of objects with same interface 

 Interface is defined by a set of operations (the 
ADT‘s functions) constrained by abstract properties 
(its axioms and preconditions).  

 The module consists of: 

 A representation for the ADT 

 An implementation for each of its operations 

 Possibly, auxiliary operations 
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Implementing an ADT 

Three components:  

(E1) The ADT‘s specification: functions, 

       axioms, preconditions  
   (Example: stacks)  

 

(E2) Some representation choice 
   (Example: <rep, count >)  
 

 (E3) A set of subprograms (routines) and  
 attributes, each implementing one of the   
 functions of the ADT specification (E1)  
 in terms of chosen representation (E2) 
 (Example: routines put, remove, item, empty, new)  
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A choice of stack representation 

count 

rep 

(array_up) 

capacity ―Push‖ operation: 

count := count + 1 

rep [count] := x 

1 



83 

Information hiding 

The designer of every 
module must select a subset 
of the module‘s properties as 
the official information 
about the module, to be made 
available to authors of client 
modules 

Public 

Private 



84 

Applying ADTs to information hiding 

Public part: 

 ADT specification 
         (E1 ) 

 

 Secret part: 

 Choice of representation 
  (E2 ) 

 Implementation of 
  functions by features 
  (E3 ) 
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Object technology: A first definition 

Object-oriented software construction is the 
software architecture method that bases the 
structure of systems on the types of objects 
they handle — not on ―the‖ function they achieve 
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A more precise definition 

Object-oriented software construction is the 
construction of software systems as structured 
collections of (possibly partial) abstract data 
type implementations 
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The fundamental structure: the class 

Merging of the notions of module and type: 

 

 Module = Unit of decomposition: set of services 

 Type = Description of a set of run-time objects 
  (―instances‖ of the type) 

 

The connection: 

 The services offered by the class, viewed as a 
module, are the operations available on the instances 
of the class, viewed as a type. 



88 

Class relations 

Two relations: 

 

 Client 

 Heir 
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Overall system structure 

       CHUNK 

word_count 
justified 

add_word 
remove_word 

justify 
unjustify 

length 
font 

FIGURE 

PARAGRAPH WORD 

space_before 

space_after 

add_space_before 

add_space_after 

set_font 
hyphenate_on 
hyphenate_off 

QUERIES COMMANDS 

FEATURES 

Inheritance 

Client 
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Bounded stacks 

Types: 
 BSTACK [G]  

         
  

Functions (Operations): 
 put : BSTACK [G]  G  BSTACK [G]  
 remove : BSTACK [G]  BSTACK [G]  
 item : BSTACK [G]  G  
 empty : BSTACK [G]  BOOLEAN  
 new : BSTACK [G] 
 capacity : BSTACK [G]  INTEGER 
 count : BSTACK [G]  INTEGER 
 
 
 
   full : BSTACK [G]  BOOLEAN 
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Television station example 

 

 

class SCHEDULE feature 

 segments: LIST [SEGMENT] 

end 

 

Source: OOSC 
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Schedules 

note 

 description : 
 ― 24-hour TV schedules‖ 

deferred class SCHEDULE feature 

 

 segments: LIST  [SEGMENT ] 
     -- Successive segments 

  deferred 
 end 

 

 air_time : DATE is 
     -- 24-hour period 
      -- for this schedule 
 deferred 
 end 

  

 set_air_time (t : DATE) 
      -- Assign schedule to 

       -- be broadcast at time t. 

  require 

       t.in_future 

  deferred 

  ensure 

        air_time = t 

  end 

 print 

       -- Produce paper version. 
  deferred 

  end 

end 
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Contracts 

Feature precondition: condition imposed on the rest of the 
world 

 

Feature postcondition: condition guaranteed to the rest of 
the world 

 

Class invariant: Consistency constraint maintained 
throughout on all instances of the class 
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Why contracts 

Specify semantics, but abstractly! 

 

(Remember basic dilemma of requirements: 

 Committing too early to an implementation 
  Overspecification! 

 

 Missing parts of the problem 
  Underspecification! 

) 
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Segment 

note 

 description : 
   "Individual fragments of a schedule " 

deferred class SEGMENT feature 

 schedule : SCHEDULE deferred end 
 -- Schedule to which 
 -- segment belongs 

 index : INTEGER deferred end 
 -- Position of segment in 
 -- its schedule 

 starting_time, ending_time : 

  INTEGER deferred end 
 -- Beginning and end of 
 -- scheduled air time 

 next: SEGMENT deferred end 
 -- Segment to be played 
 -- next, if any 

  

sponsor : COMPANY deferred end 
 -- Segment‘s principal sponsor 

 

rating : INTEGER deferred end 
 -- Segment‘s rating (for 
 -- children‘s viewing etc.) 

  

  Commands such as change_next, 
set_sponsor, set_rating omitted  

 

Minimum_duration : INTEGER = 30 
-- Minimum length of segments, 
-- in seconds 

 

Maximum_interval : INTEGER = 2 
-- Maximum time between two 
-- successive segments, in seconds 
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Segment (continued) 

invariant 

 in_list: (1 <= index) and (index <= schedule.segments.count) 

 in_schedule: schedule.segments.item (index) = Current 

 next_in_list: (next /= Void ) implies 

  (schedule.segments.item (index + 1) = next) 

 no_next_iff_last: (next = Void) = (index = schedule.segments.count) 

 non_negative_rating: rating >= 0 

 positive_times: (starting_time > 0 ) and (ending_time > 0) 

 sufficient_duration: 
 ending_time – starting_time >= Minimum_duration 

 decent_interval : 
 (next.starting_time) - ending_time <= Maximum_interval 

end 
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Commercial 

note 

 description: "Advertizing segment " 
deferred class COMMERCIAL inherit 
 SEGMENT 
  rename sponsor as advertizer end 
feature 

 primary: PROGRAM deferred 
 -- Program to which this 
 -- commercial is attached 

 primary_index: INTEGER deferred 
 -- Index of primary 

  

set_primary (p: PROGRAM) 

  -- Attach commercial to p. 

    require 

    program_exists: p /= Void 

     same_schedule: p,schedule = schedule 

     before: 
    p.starting_time <= starting_time 

    deferred 

   ensure 

  index_updated: 
          primary_index = p.index 

  primary_updated: primary = p 
    end 

invariant 

 meaningful_primary_index: primary_index = primary.index 

 primary_before: primary.starting_time <= starting_time 

 acceptable_sponsor: advertizer.compatible (primary.sponsor) 

 acceptable_rating: rating <= primary.rating 

end 
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Diagrams: UML, BON 

Text-Graphics 
Equivalence 
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O-O analysis process 

Identify abstractions 

 New 

 Reused 

Describe abstractions through interfaces, with contracts 

Look for more specific cases: use inheritance 

Look for more general cases: use inheritance,  simplify 

Iterate on suppliers 

 

At all stages keep structure simple and look for applicable 
contracts 
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Your turn!                                Describe this in an O-O way 

Consider a small library database 
with the following transactions: 

1. Check out a copy of a book. 
Return a copy of a book. 

2. Add a copy of a book to the 
library. Remove a copy of a 
book from the library. 

3. Get the list of books by a 
particular author or in a 
particular subject area. 

4. Find out the list of books 
currently checked out by a 
particular borrower. 

5. Find out what borrower last 
checked out a particular copy 
of a book. 

There are two types of users: staff 
users and ordinary borrowers. 

Transactions 1, 2, 4, and 5 are 
restricted to staff users, except 
that ordinary borrowers can 
perform transaction 4 to find 
out the list of books currently 
borrowed by themselves. The 
database must also satisfy the 
following constraints: 

All copies in the library must 
be available for checkout or 
be checked out. 

No copy of the book may be 
both available and checked 
out at the same time. 

A borrower may not have 
more than a predefined 
number of books checked out 
at one time. 
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Practical advice 
 

 Take advantage of O-O techniques 
from the requirements stage on 

 
 Use contracts to express semantic 

properties 
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Practical advice 

 

 Write ADT specifications for 
delicate parts of the system 
requirements 
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Bounded stacks (continued) 

Preconditions:  
 remove (s : BSTACK [G]) require not empty (s)  
 item (s : BSTACK [G]) require not empty (s)  
 put (s : BSTACK [G]) require not full (s)  

Axioms: For all x : G, s : BSTACK [G]  
 item (put (s, x)) = x  
 remove (put (s, x)) = s  
 empty (new)  
 not empty (put (s, x))  
 full = (count = capacity) 
 count (new) = 0 
 count (put (s, x)) = count (s) + 1 
 count (remove (s)) = count (s) - 1 


