
Chair of Software Engineering

1

Software Architecture

Bertrand Meyer, Carlo A. Furia, Martin Nordio

ETH Zurich, February-May 2011

Lecture 6: Designing for reuse

2

What exactly is a component?

A component is a program element such that:

 It may be used by other program elements
(not just humans, or non-software systems).
 These elements will be called “clients”

 Its authors need not know about the clients.

 Clients’ authors need only know what the
component’s author tells them.

3

This is a broad view of components

It encompasses patterns and frameworks

Software, especially with object technology, permits
“pluggable” components where client programmers can
insert their own mechanisms.

Supports component families

4

Why reuse?

Faster time to market

Guaranteed quality

Ease of maintenance

Standardization of software practices
Preservation of know-how

Consumer view

Producer view

5

Component quality

Bad-quality components are a major risk
 Deficiencies scale up, too

High-quality components can transform the state of the
software industry

The key issue in a reuse-oriented software policy

6

The culture of reuse

From consumer to producer

Management support is essential, including financial

The key step: generalization

7

A reuse policy

The two principal elements:

 Focus on producer side

 Build policy around a library

Library team, funded by Reuse Tax

Library may include both external and internal
components

Define and enforce strict admission criteria

8

Traditional lifecycle model

Separate tools:
Programming environment
Analysis & design tools,

 e.g. UML

Consequences:

Hard to keep model,
implementation, documentation
consistent

Constantly reconciling views
Inflexible, hard to maintain systems
Hard to accommodate bouts of late

wisdom
Wastes efforts
Damages quality

Feasibility
study

Requirements

Specification

Global
design

Detailed
design

Implemen-
tation

Distribution

V & V

9

A seamless model

Seamless development:
 Single notation, tools,

concepts, principles
throughout

 Continuous, incremental
development

 Keep model,
implementation
documentation
consistent

Reversibility: back and forth

Example classes:

PLANE, ACCOUNT,
TRANSACTION…

STATE, COMMAND…

HASH_TABLE…

TEST_DRIVER…

TABLE…

Analysis

Design

Implemen-
tation

V&V

Generali-
zation

10

The cluster model

A

D

I

V

G

Permits dynamic

reconfiguration

A

D

I

V

G

A

D

I

V

G

A

D

I

V

G

A

D

I

V

G

A

D

I

V

G

Mix of sequential and

concurrent engineering

11

Levels of reusability

1 - Usable by programs written by the same author

2 - Usable within a group or company

3 - Usable within a community

4 - Usable by anyone

0 - Usable in some program

12

Nature or nurture?

Two modes:

 Build and distribute libraries of reusable components

 Generalize out of program elements

(Basic distinction:

 Program element --- Software component)

A D I V G

13

Generalization

Prepare for reuse. For example:
 Remove built-in limits
 Remove dependencies on

specifics of project
 Improve documentation,

contracts...
 Abstract
 Extract commonalities and

revamp inheritance hierarchy

Needs management commitment

B

A*

Y

X

Z

A D I V G

14

Keys to component development

Substance: Rely on a theory of the application domain

Form: Ensure consistency

 High-level: design principles

 Low-level: style

15

Design principles

Object technology: Module Type

Design by Contract

Command-Query Separation

Uniform Access

Operand-Option Separation

Inheritance for subtyping, reuse, many variants

Bottom-Up Development

Design for reuse and extension

Style matters

16

Designing for reuse

“Formula-1 programming”

The opportunity to get things right

17

Typical API in a traditional library (NAG)

nonlinear_ode
 (equation_count : in INTEGER;
 epsilon : in out DOUBLE;
 func : procedure
 (eq_count : INTEGER; a : DOUBLE;
 eps : DOUBLE; b : ARRAY [DOUBLE];
 cm : pointer Libtype);
 left_count, coupled_count : INTEGER …)

[And so on. Altogether 19 arguments, including:

 4 in out values;
 3 arrays, used both as input and output;
 6 functions, each 6 or 7 arguments, of which 2 or 3 arrays!]

Ordinary
differential

equation

18

The EiffelMath routine

... Create e and set-up its values (other than defaults) ...

e.solve

... Answer available in e.x and e.y ...

19

The Consistency Principle

All the components of a library should proceed from an
overall coherent design, and follow a set of systematic,
explicit and uniform conventions.

Two components:

 Top-down and deductive (the overall design).

 Bottom-up and inductive (the conventions).

20

What makes a good data abstraction?

 Can talk about it in substantive terms

 Several applicable “features”

 Some are queries, some are commands
(Ask about instances / Change instances)

 If variant of other, adds or redefines features
(Beware of taxomania)

Corresponds to clear concept of one of:

- Analysis (unit of modeling of some part of the
world)

- Design (unit of architectural decomposition)

- Implementation (useful data structure)

Good signs:

21

“Design smells”

 “This class does ...”

 Name is verb, e.g. “Analyze”

 Very similar to other class

 “Taxomania”

Signs that a proposed class may not be right

22

Abstraction and objects

 Analysis classes – examples: AIRPLANE, CUSTOMER,
PARTICLE

 Design classes – examples: STATE, COMMAND, HANDLE
 Many classes associated with design patterns
 fall into this category

 Implementation classes – examples: ARRAY, LINKED_LIST

Not all classes describe “objects” in the sense of real-
world things
Types of classes:

The key to the construction of a good library is the
search for the best abstractions

It amounts to devising a theory of the underlying domain

23

Eiffelbase hierarchy

Representation
Access

Iteration

CONTAINER

BOX

FINITE INFINITE

BOUNDED UNBOUNDED

FIXED RESIZABLE

COLLECTION

BAG SET

TABLE ACTIVE SUBSET

DISPENSER INDEXABLE CURSOR_
STRUCTURE

SEQUENCE

TRAVERSABLE

HIERAR_
CHICAL LINEAR

BILINEAR

*

* * *

*

*

*

*

* *

* * * * * *

* * * * * *

COUNTABLE
*

24

Active data structures

Old interface for lists:

 l.insert (i, x)
 l.remove (i)
 pos := l.search (x)

 l.insert_by_value (…)
 l.insert_by_position (…)
 l.search_by_position (…)

New interface:

Queries:

 l.index l.item l.before l.after

Commands:

 l.start l.forth l.finish l.back
 l.go (i) l.search (x) l.put (x) l.remove

-- Typical use:
 j := l.search (x)
 l.insert (j + 1, y)

Number
of

features

Perfect

Desirable

?

Number of
(re)uses

25

A list seen as an active data structure

"Zurich"

Cursor

item

index

count 1

forth back

finish start

after before

26

Beyond internal cursors

Internal cursors, as in the preceding example, have
disadvantages:

 Poorly adapted to recursive routines and concurrency

 Programmers need to remember to reset cursor, e.g.

backup := l.index
from start until after loop

 some_operation (l.item)

 l.forth
end

l.go_i_th (backup)

27

External cursor

The cursor becomes an object:

"Zurich"

count 1

Operations on a cursor c :

c.start c.forth and other commands

c.index c.item c.after and other queries

28

Loop construct with built-in cursor

Instead of
 local
 c : CURSOR […]
 …

 create c.make (my_list)

 from c.start until c.after loop

 some_operation (c.item)

 c.forth
end

just use:

 across my_list as c loop some_operation (c.item) end

Structure’s class must be a descendant of ITERABLE.
This is the case with lists, arrays, hash tables, …

29

“across” loop for predicates

across my_integer_list as c all c.item > 0 end

across my_integer_list as c some c.item > 0 end

30

Uniform access

Uniform Access principle

It does not matter to the client
whether you look up or compute

31

Uniform access

balance = list_of_deposits.total – list_of_withdrawals.total

list_of_deposits

list_of_withdrawals

balance

list_of_deposits

list_of_withdrawals

(A1)

(A2)

32

A self-adapting complex number class

class COMPLEX feature {NONE }
 x_internal, y_internal, ro_internal, theta_internal : REAL

 cartesian_available, polar_available : BOOLEAN

 update_cartesian
 require
 polar_ok: polar_available
 do
 if not cartesian_available then
 internal_x := ro * cos (theta)
 internal_y := ro * sin (theta)
 cartesian_available := True
 end
 ensure
 cart_ok: cartesian_available
 polar_ok: polar_available
 end

33

Representation invariant

invariant
 cartesian_available or polar_available

34

Accessing the horizontal coordinate

feature
 x : REAL
 -- Abscissa of current point
 do
 update_cartesian
 Result := x_internal
 ensure
 cartesian_ok: cartesian_available
 end

35

Adding two complex numbers

plus (other : COMPLEX)
 -- Add other to current complex number.
 do
 update_cartesian
 x_internal := x_internal + other.x
 y_internal := y_internal + other.y
 ensure
 cartesian_ok: cartesian_available
 end

36

Commands and queries

Command-Query Separation principle

A query must not change the target object’s state

37

Command-Query separation principle

A command (procedure) does something but does not
return a result.

A query (function or attribute) returns a result but does
not change the state.

This principle excludes many common schemes, such as
using functions for input (e.g. C’s getint)

38

Feature classification (reminder)

Command

Query

Feature

Function

No result

Feature

Memory

Computation

Client view

(specification)
Internal view

(implementation)

Returns result

Attribute

Procedure

Memory

Computation

Routine

Feature Feature

39

Command-Query Separation Principle

Asking a question
should not change the answer!

40

Referential transparency

If two expressions have equal value, one may be
substituted for the other in any context where that
other is valid.

If a = b, then f (a) = f (b) for any f.

Prohibits functions with side effects.

Also:

 For any integer i, normally i + i = 2 x i

 But even if getint () = 2, getint () + getint () is
usually not equal to 4

41

Command-query separation

Input mechanism using EiffelBase
 (instead of n := getint ()):

 io.read_integer

 n := io.last_integer

42

Libraries and contracts

Include appropriate contracts:

 Contracts help design the libraries right.

 Preconditions help find errors in client software.

 Library documentation fundamentally relies on
contracts (interface views).

APPLICATION

LIBRARY

l.insert (x, j + k + 1)

i <= count + 1

insert (x : G; i : INTEGER)
require

i >= 0

43

Designing for consistency: An example

Describing active structures properly: can after also be
before?

Symmetry:

For symmetry and consistency, it is desirable to have the
invariant properties.
 after = (index = count + 1)

 before = (index = 0)

start finish

forth back

after before

before

item

after

count

not before
not after

Valid cursor
positions

A

44

List with cursor

"Zurich"

Cursor

item

index

count 1

forth back

finish start

after before

45

Designing for consistency

Typical iteration:

 from
 start
 until
 after
 loop
 some_action (item)

 forth
 end

Conventions for an empty structure?

 after must be true for the iteration.

 For symmetry: before should be true too.

But this does not work for an empty structure (count = 0, see
invariant A): should index be 0 or 1?

46

Designing for consistency

To obtain a consistent convention we may transform the
invariant into:

 after = (is_empty or (index = count + 1))
 before = (is_empty or (index = 0)

 -- Hence: is_empty = (before and after)

Symmetric but unpleasant. Leads to frequent tests

 if after and not is_empty then ...

instead of just

 if after then ...

B

47

Introducing sentinel items

Invariant (partial):
 0 <= index

 index <= count + 1

 before = (index = 0)

 after = (index = count + 1)

 not (after and before)

A

not after
before

not before
after

item count count + 1 0 1

not after ; not before
1 <= index; index <= count

Valid cursor
positions

48

The case of an empty structure

not after
before

not before
after

1 (i.e. count + 1) 0

Valid cursor positions

49

Can after also be before?

Lessons from an example; General principles:

 Consistency
 A posteriori: “How do I make this design decision

compatible with the previous ones?”.
 A priori: “How do I take this design decision so that

it will be easy – or at least possible – to make future
ones compatible with it?”.

 Use assertions, especially invariants, to clarify the
issues.

 Importance of symmetry concerns (cf. physics and
mathematics).

 Importance of limit cases (empty or full
structures).

50

Abstract preconditions

Example (stacks):

 put

 require

 not full
 do

 …

 ensure

 …

 end

51

How big should a class be?

The first question is how to measure class size. Candidate metrics:

 Source lines.

 Number of features.

For the number of features the choices are:

 With respect to information hiding:

 Internal size: includes non-exported features.

 External size: includes exported features only.

 With respect to inheritance:

 Immediate size: includes new (immediate) features only.

 Flat size: includes immediate and inherited features.

 Incremental size: includes immediate and redeclared
features.

52

Feature classification (reminder)

Command

Query

Feature

Function

No result

Feature

Memory

Computation

Client view

(specification)
Internal view

(implementation)

Returns result

Attribute

Procedure

Memory

Computation

Routine

Feature Feature

53

Another classification

Immediate

Inherited

Redeclared

New in class

Unchanged

Changed
From parent

Kept

Feature of a class

Redefined

Was deferred

Had an implementation

Effected

Incremental size

54

The “shopping list approach”

If a feature may be useful, it probably is.

An extra feature cannot hurt if it is designed according
to the spirit of the class (i.e. properly belongs in the
underlying abstract data type), is consistent with its
other features, and follows the principles of this
presentation.

No need to limit classes to “atomic” features.

55

How big should a class be?

As big as it needs to – what matters more is
consistency of the underlying data abstraction

Example: STRING_8
 154 immediate features
 2675 lines of code

56

EiffelBase statistics

Percentages, rounded.
250 classes, 4408 exported features

0 to 5 features 43

6 to 10 features 14

11 to 15 features 10

16 to 20 features 4

21 to 40 features 17

41 to 80 features 9

81 to 142 features 2

(All measures from version 6.0, courtesy Yi Wei)

5
6

57

EiffelVision on Windows

Percentages, rounded.
733 classes, 5872 exported features

0 to 5 features 64

6 to 10 features 14

11 to 15 features 8

16 to 20 features 5

21 to 40 features 7

41 to 80 features 2

5
7

58

EiffelVision on Linux

Percentages, rounded.
698 classes, 8614 exported features

0 to 5 features 63

6 to 10 features 13

11 to 15 features 8

16 to 20 features 5

21 to 40 features 8

41 to 80 features 2

5
8

59

Language and library

The language should be small

The library, in contrast, should provide as many useful
facilities as possible.

Key to a non-minimalist library:

 Consistent design.

 Naming.

 Contracts.

Usefulness and power.

60

The size of feature interfaces

More relevant than class size for assessing complexity.

Statistics from EiffelBase and associated libraries:

 Number of features 4408

Percentage of queries 66%

Percentage of commands 34%

Average number of arguments to a feature 0.5

Maximum number 5

No arguments 57%

One argument 36%

Two arguments 6%

Three or more arguments 1%

61

Size of feature interfaces

Including non-exported features:

Average number of arguments to a feature 0.6

Maximum number 12

No arguments 55%

One argument 36%

Two arguments 7%

Three arguments 2%

Four arguments 0.4%

Five or six arguments 0.1%

6
1

62

Size of feature interfaces

EiffelVision on Windows (733 classes, exported only)

Number of features 5872

Percentage of queries 56%

Percentage of commands 44%

Average number of arguments to a feature 0.5

Maximum number 10

No argument 67%

One argument 23%

Two arguments 6%

Three arguments 1.5%

Four arguments 1.5%

Five to seven arguments 0.6%

6
2

63

Size of feature interfaces

EiffelVision on Linux (698 classes, exported only)

Number of features 8614

Percentage of queries 56%

Percentage of commands 44%

Average number of arguments to a feature 0.96

Maximum number 14

No argument 49%

One argument 28%

Two arguments 15%

Three arguments 4%

Four arguments 2%

Five to seven arguments 1%

6
3

64

Operands and options

Two possible kinds of argument to a feature:

 Operands: values on which feature will operate.

 Options: modes that govern how feature will operate.

Example: printing a real number.

The number is an operand; format properties (e.g. number of
significant digits, width) are options.

Examples:

 (Non-O-O) print (real_value, number_of_significant_digits,
 zone_length, number_of_exponent_digits, ...)

 (O-O) my_window display (x_position, y_position,
 height, width, text, title_bar_text, color, ...)

65

Recognizing options from operands

Two criteria to recognize an option:

 There is a reasonable default value.

 During the evolution of a class, operands will
normally remain the same, but options may be
added.

66

The Option-Operand Principle

Option values:
 Defaults (specified universally, per type, per object)
 To set specific values, use appropriate “setter”

procedures

Example:
 my_window set_background_color ("blue")
 ...
 my_window display

Only operands should appear as arguments of a feature

67

Operands and options

Useful checklist for options:

Option

Window color

Hidden?

Default

White

No

Set

set_background_color

set_visible
set_hidden

Accessed

background_color

hidden

68

Naming (classes, features, variables…)

Traditional advice (for ordinary application programming):

Choose meaningful variable names!

69

enter

push

add

insert

Original

Class

ARRAY

STACK

QUEUE

HASH_TABLE

entry

top

oldest

value

pop

remove_oldest

delete

Features

names for EiffelBase classes

put

put

put

put

item

item

item

item

remove

remove

remove

Final

enter

push

add

insert

Class

ARRAY

STACK

QUEUE

HASH_TABLE

remove_oldest

delete

Features

put

put

put

item

item

item

item

remove

remove

remove

entry

top

oldest

value

put

New and old names for EiffelBase classes

70

Naming rules

Achieve consistency by systematically using a set of
standardized names.

Emphasize commonality over differences.

Differences will be captured by:

 Signatures (number and types of arguments &
result)

 Assertions

 Comments

71

Some standard names

Queries (non-boolean):
 count, capacity
 item
 to_external, from_external

Boolean queries:
 writable, readable, extendible, prunable
 is_empty, is_full
 -- Usual invariants:
 0 <= count ; count <= capacity
 is_empty = (count = 0)
 is_full = (count = capacity)

 if s deletable then
 s delete (v)
end

-- Some rejected names:

 if s addable then
 s add (v)
end

Commands:
 put, extend, replace, force
 wipe_out, remove, prune
 make -- For creation

72

Grammatical rules

Procedures (commands): verbs in infinitive form.
 Examples: make, put, display

Boolean queries: adjectives
 Example: full (older convention)
 Now recommended: is_full, is_first

 Convention: Choose form that should be false by default
 Example: is_erroneous.
 This means that making it true is an event worth talking about

Other queries: nouns or adjectives.
 Examples: count, error_ window

Do not use verbs for queries, in particular functions; this goes with
Command-Query Separation Principle

 Example: next_item, not get_next_item

73

Feature categories

 class
 C
 inherit
 …
 feature -- Category 1
 … Feature declarations

 feature {A, B } -- Category 2
 … Feature declarations …

 feature {NONE } -- Category n
 … Feature declarations …

 invariant
 …
 end

74

Feature categories

Standard categories (the only ones in EiffelBase):

 Access
 Measurement
 Comparison
 Status report

Basic queries

Status setting
Cursor movement
Element change
Removal
Resizing
Transformation

Basic commands

 Conversion
 Duplication
 Basic operations

Transformations

 Inapplicable
 Implementation
 Miscellaneous

Internal

 Initialization
Creation

75

Obsolete features and classes

A constant problem in information technology:

How do we reconcile progress with the need to protect
the installed base?

Obsolete features and classes support smooth evolution.

In class ARRAY:

 enter (i : V ; v : T)
 obsolete
 "Use `put (value, index)’ "
 do
 put (v, i)
 end

76

Obsolete classes

class
 ARRAY_LIST [G]

obsolete
 "[

 Use MULTI_ARRAY_LIST instead
 (same semantics, but new name

 ensures more consistent terminology).

 Caution: do not confuse with ARRAYED_LIST
 (lists implemented by one array each).
]"

inherit
 MULTI_ARRAY_LIST [G]

end

77

Summary

 Reuse-based development holds the key to
substantial progress in software engineering

 Reuse is a culture, and requires management
commitment
 (“buy in”)

 The process model can support reuse

 Generalization turns program elements into
software components

 A good reusable library proceeds from systematic
design principles and an obsession with consistency

78

Complementary material

OOSC2:

 Chapter 22: How to find the classes

 Chapter 23: Principles of class design

