
Chair of Software Engineering

Software Architecture

Bertrand Meyer, Carlo A. Furia, Martin Nordio

ETH Zurich, February-May 2011

Lecture 9:
Configuration management

About your future

 You will never work alone.

 Other people will mess up
your code.

 You will mess up other
people’s code.

 You will never write a
(major) program from
scratch.

 The software you will work
on was already there when
you joined the company.

 The software you will work
on will still be there when
you leave the company.

Configuration management – the long story

“Configuration management is unique identification,
controlled storage, change control, and status reporting of
selected intermediate work products, product components,

and product during the life of a system.”

(Anne Mette Jonassen Hass: “Configuration Management; Principles and Practice”)

3

Configuration management – the short story

Configuration management is about the role of

TIME

in software development.

It is the task of tracking and controlling changes.

4

Ten key SCM activities

1. Accessing and retrieving software

2. Retrofitting changes across the development life cycle

3. Migrating changes across the development life cycle

4. Managing the compile and build process

5. Managing the distribution of changes

6. Obtaining approvals and sign-offs

7. Managing software change requests

8. Coordinating communication between groups

9. Obtaining project status

10. Tracking bugs and fixes

(Software Configuration Management, Jessica Keyes)

Change management

 CM has to record

 WHICH document was changed.

 WHAT was changed.

 WHO has done the change.

 WHEN the change was made.

 The history of the changes should be visible.

 It should be possible to undo changes.

 It should be possible to view the version of a document
at a certain point in time.

6

Three parts of SCM

1. Version control systems

a) Local version control

b) Centralized version control

c) Distributed version control

2. Build management systems

3. Bug and issue tracking systems

7

Three parts of SCM

1. Version control systems

a) Local version control

b) Centralized version control

c) Distributed version control

8

Versions/Revisions

 Versions (also called revisions) give a unique time-
dependent identification to each document.

 Deciding for proper version names is the basis of
successful software configuration management.

 Version numbers can have multiple levels (within one
project).

 Examples:

 Versions of documents:
 Example: REQDOC-20100103-R4

 Versions of source code:
 1.1, 1.2, 1.3, 1.4, 1.4.1, ...

 Versions of binary builds:
 610, 611, 612, ...

9

Space

root_class.e

readme.txt
gui/

gui/main_window.e

gui/dialog_window.e

net/

net/ftp_protocol.e

...

10

Space

A system that stores and organizes documents
over space is called a file system.

Space and time

11

Space

A system that stores and organizes documents
over space and time is called a repository.

Time

root_class.e

readme.txt
gui/

gui/main_window.e

gui/dialog_window.e

net/

net/ftp_protocol.e

...

Copyright
info
updated

New button
added

Rewritten
documentation

Directory
created

Protocol
implemented Bug fixed

Version control systems (VCS) manage…

 Source code revisions and variants

 Binary versions of the software (builds)

 Requirements and analysis documents

 Design documents, UML diagrams

 Test cases and test results

 System configuration information

 …

12

VCS are about…

 ... knowing who has done what to which document in the
past.

 ... enabling different people at different locations to
work on the same set of documents at the same time.

 ... going back to an old version of the documents in the
case that the path taken was not good.

 ... tracking the quality of the software over time and to
stop software regression.

13

Local version control

 Each document under independent version control

 File-level granularity

 Versions of the document are stored in the document
itself

 Limited support for branching/merging

 Mostly useful in single-user scenarios, or with serialized
access to files.

14

Local version control

Examples:

 Microsoft Word’s track change

 SCCS (Source Code Control System)
 First version control software

 First version (in SNOBOL): 1972, Bell Labs, Marc Rochkind

 File format still used by other VCS

 RCS (Revision Control System)
 Free and improved version of SCCS

 First version: 1982, Purdue University, Walter Tichy

 Today part of the GNU project

 Improvements over SCCS:
 Automated storing, retrieval, logging and identification of

revisions

 Store deltas (“diffs”)

 Locking of files

15

Lock-modify-write

 Also called “lock modify unlock”

 File is locked by a user for modification

 System prohibits changes by other users when locked

 Only approach possible with binary files (and other
formats with complex structure)

Advantage: No conflicts

Drawback: Wait until file is unlocked

Based on the philosophy of pessimistic version management

16

What a session with RCS looks like

1. Create a file

2. Check-in: ci test.txt

• creates test.txt,v

• destroys test.txt

3. Check-out: co test.txt

• generates back test.txt (in the latest version)

• write-protected by default!

4. Do your edits on the working copy test.txt

• after removing write-protection

5. Check-in changes: ci test.txt

• fails because you need a lock to check in!

6. Retroactively lock file: rcs –l test.txt

7. Have a look at test.txt,v
17

Centralized version control

 Client/server system with access control

 Server stores versions of a whole project and history

 Clients check out a local working copy

 Examples:

 CVS (Concurrent Versions System)
 First versions: 1986

 Open source

 Developed from RCS

 No locking by default (but explicit locking available)

 SVN (Subversion)
 First versions: 2000

 Open source, maintained by the Apache foundation

 “A better CVS”

 18

CVS

 Best known VCS tool.

http://www.cvshome.org

 Key to most open-source development projects and used
in many companies.

 Based on RCS (Revision Control System)

 extended to handle multiple files collectively

 Command-line program

 Graphical User Interfaces:

 WinCVS (Windows) / GCVS (Unix)

 Integration into Eclipse and many other IDEs

19

http://www.cvshome.org

CVS

Main features of CVS:

 Central repository

 Checkout creates a copy of the files on the local
machine.

 File-based versioning

 Distributed work over the Internet with PSERVER
(insecure) or SSH (secure) protocols.

 Can work with binary and ASCII encoded files, but is
not very practical with binary files (no diffs).

 Supports primitive conflict resolving commands.

20

Views

21

Time

File A

File B

File C

1.0

1.0

1.0 1.1 1.2

1.1 1.2

1.1 1.2

1.3

1.3 1.4 1.5

View at time T

Head/Tip

22

File A

File B

File C

1.0

1.0

1.0 1.1 1.2

1.1 1.2

1.1 1.2

1.3

1.3 1.4 1.5

Head

Head = View at the “latest” time

Time

Tagging/labeling

23

File A

File B

File C

1.0

1.0

1.0 1.1 1.2

1.1 1.2

1.1 1.2

1.3

1.3 1.4 1.5

Tag/Label = Important snapshot in time

Time

Release 1.0

Branching

Creating multiple variants of a set of documents is called
branching (or forking)

24

1.0 1.1 1.2 1.3

1.1.2.2 1.1.2.3 1.1.2.1

Trunk
(sometimes
called baseline
or mainline)

Branch

Merging

Joining variants that were developed independently for
some time is called merging

25

1.0 1.1 1.2 1.3

1.1.2.2 1.1.2.3 1.1.2.1

1.4

Distributed development

26

Repository Developer 2 Developer 1

checkout checkout

commit

commit

update

checkout: create
local working copy
of repository

commit: write your
changes to the
repository

update: merge
changes from the
repository into
the local working
copy

Distributed development

27

Repository Developer 2 Developer 1

checkout checkout

commit

commit

Conflict

commit

resolve: user
intervention to
address a conflict
between changes
on the same
document

Copy modify merge

 Allows simultaneous modifications of a document

 Changes need to be merged automatically or manually

Advantage: Simultaneous editing

Disadvantage:

 Not applicable to binary files

 Risks of conflicts

Based on the philosophy of optimistic version management

Used by all modern centralized (and distributed) version
control systems

28

What is wrong with CVS?

 File-based management

 What happens when you rename files?

 When you change the directory structure?

 No atomic commits

 A commit operation crashing may corrupt the
repository

 Network protocols are problematic

 PSERVER is not encrypted

 RSH is obsolete

 SSH lacks anonymous access

 Too much communication between client and server

 Inefficient storage of binary files

 Not designed for heavy branching 29

SVN (Subversion): references

Available at:

http://subversion.tigris.org/

Book on SVN at:

http://svnbook.red-bean.com

“Subversion is meant to be a better CVS, so it has most of
CVS's features. Generally, Subversion's interface to a
particular feature is similar to CVS's, except where
there's a compelling reason to do otherwise.”

 -- Subversion Homepage

30

http://subversion.tigris.org/
http://svnbook.red-bean.com
http://svnbook.red-bean.com
http://svnbook.red-bean.com

Working copies

 Subversion uses a client server architecture

 Every developer works on his/her “working copy”

31

Repository

Working
copy

Working
copy

Working
copy

Version numbering SVN

32

File A

File B

File C

1

1

1 2 3

3 6

5 8

8

4 7 9

Head

Time

Version numbering per “commit”

2

2

3 4

4 5

5

6

6

7

7

8

9

9

HEAD, BASE, COMMITTED, and PREV

33

File A

Working
copy

(revision 7)

Pre-defined aliases. E.g.:

HEAD = revision 9

BASE = revision 7

COMMITED = revision 6

PREV = revision 5

1 3 6 8 2 4 5 7 9

Directories and changes

 SVN tracks tree structures, not just file contents

 You may move files (move = copy + delete)

 You may add/delete/copy/move directories, but the
changes in the repository only take place after
committing

 Directories have version numbers

 Branching means copying the directory structure into a
new place in the repository (using a “diff” copy)

34

Subversion Commands

 svn checkout

 svn update / svn revert

 svn commit

 svn info / svn log / svn status

 svn add / svn delete / svn move / svn mkdir

 svn copy

 svn diff

 svn merge / svn resolved

 svn cat / svn list / svn blame

 svn export / svn import / svn switch

35

What’s wrong with SVN?

36

“Subversion is meant to be a better CVS,
so it has most of CVS's features.”

“[...] my hatred of CVS has meant that I
see Subversion as being the most pointless
project ever started. The slogan of
Subversion for a while was "CVS done
right", or something like that, and if you
start with that kind of slogan, there's
nowhere you can go. There is no way to do
CVS right.”

 -- Linus Torvalds

What’s wrong with SVN?

 Rename/move not behaving robustly in all situations

 Misses some “super-user” management features that
would come handy

 E.g.: permanently remove all versions older than X

 Centralized version control has issues with large
development communities and/or with highly cooperative
development

 How to enforce different access levels?

 To branch or not to branch?

 Commit-update: how frequently?

37

Distributed version control systems (DVCS)

 Every working copy is a repository with version history

 a backup of the code base

 a potential branch

 Synchronization uses the exchange of patches (change-
sets) with unique ids between peers

 “Pull” changes from other repositories

 “Push” changes to other repositories

38

Distributed version control systems (DVCS)

 Usually one copy is sanctioned as main development
branch

 Different branches are merged based on the “reliability
rank” of the committer

 Based on the committer’s history of how reliable a
committer he/she’s been

 Merging is usually not painful

 Can do selective merge of some parts only

 Joining the project is easy

 No need for formal approval

 New project members have to work their ways up the
committers’ hierarchy

 Working off-line less risky

39

Examples of distributed VCS

 Bitkeeper (proprietary since 2005)

 Git (Linus Torvalds, ~2005, free)

 Mercurial (~ 2005, free)

40

Centralized VCS

41

Git the basics, Bart Trojanowski, http://excess.org/article/2008/07/ogre-git-tutorial/

Workflow centralized VCS

42

http://betterexplained.com/articles/intro-to-distributed-version-control-illustrated/

Operations

Bootstrap
 init

 checkout

 switch branch

Modify
 add, delete, rename

 commit

Information
 status

 diff

 log

Reference
 tag

 branch
43

Decentralized
 clone
 pull, fetch
 push

Distributed VCS: peer-to-peer architecture

44

Git the basics, Bart Trojanowski, http://excess.org/article/2008/07/ogre-git-tutorial/

Workflow distributed VCS

45

http://betterexplained.com/articles/intro-to-distributed-version-control-illustrated/

Git: main features

 Radically embraces the distributed model of VCS

 heavy branch/merge

 multiple merge algorithms

 no explicit storage of revision history
 change history recovered dynamically

 a file rename is a change like any other

 Performance is a main concern

 scalability to large projects, with many developers

 Resilience to errors and malicious attacks

 Modular design

 Collection of tools similar to GNU/Linux systems

 “Packaged” files

 store multiple objects in files efficiently
46

Objects in Git

Object types:
 Blob

 content of a file

 Tree
 directory structure

 Commit
 tree + history

 Tag
 reference and label to

another container

47

Git the basics, Bart Trojanowski,
http://excess.org/article/2008/07/
ogre-git-tutorial/

Objects in Git

48

Objects in Git

49

Git example – bootstrapping

50

Git the basics, Bart Trojanowski, http://excess.org/article/2008/07/ogre-git-tutorial/

Git example – bootstrapping

51

Git the basics, Bart Trojanowski, http://excess.org/article/2008/07/ogre-git-tutorial/

Git example – do work

52

Git the basics, Bart Trojanowski, http://excess.org/article/2008/07/ogre-git-tutorial/

Git example – commit

53

Git the basics, Bart Trojanowski, http://excess.org/article/2008/07/ogre-git-tutorial/

Remote repositories

 To get a local copy

git clone remote_url

 To fetch and merge remote changes

git pull

 To publish local changes to remote repo

git pull

 Always pull before push

54

Advantages/disadvantages of DVCS

Advantages:

 Everyone has a local sandbox

 Works offline

 Fast diffs, commits, reverts

 Handles changes well

 Easy branching and merging

 Less management (no server)

Disadvantages:

 Not a backup

 No real “latest version”

 No real revision numbers
 (you can still use change numbers or tags) 55

Three parts of SCM

2. Build management systems

56

Build activities

 Compiling and linking multi-package application

 Creating installers

 Related activities

 deployment

 release documentation

 ...

57

Build activities

Compiling and linking multi-package application

 manually invoke the compiler

 compilation scripts

 build automation

58

Make

Make (first release: 1977, Stuart Feldman)

 call compiler/linker in right order according to
dependencies

 incremental compilation of the minimal number of
modules changed

 a Makefile specifies the targets (files to be
compiled) and the dependencies

Automake

 generate platform-specific Makefiles from a higher-
level description

Make-like tools

 e.g.: Apache Ant for Java

59

Makefile basic structure

target1: component1.1 component1.2 component1.3 ...

 command1.1 to build target 1

 command1.2 to build target 1

 ...

target2: component2.1 component2.2 component2.3 ...

 command2.1 to build target 2

 command2.2 to build target 2

 ...

60

components can
include
references to
other targets

first target
built by default

Makefile: example

application: foobar.c

 gcc foobar.c -o application

foobar.txt: foo.txt bar.txt

 cat foo.txt bar.txt > foobar.txt

foobar.c: foobar.txt

 mv foobar.txt foobar.c

61

Make in action

 $> make targetx

 Semantics:

 Recursively make all the other targets targetx
depends upon

 If any of targetx’s dependencies are newer than
targetx or if targetx doesn’t exist
 (re)generate targetx by executing the associated commands

 Otherwise
 done

62

Binary builds

There are different levels of binary builds:

 Daily (Nightly) Builds

 Integration Builds

 Stable Builds

 Releases
 Alpha Release

 Beta Release

 Release Candidate

 Official Release

63

current, but not
reliable

not current, but
reliable

Three parts of SCM

3. Bug and issue tracking systems

64

Bug tracking

Bug-Tracking is the term for an infrastructure that

captures and manages bug-reports in a given

project.

The number and quality of bugs is normally a

judgment for the release-quality of software.

65

Bugzilla

Web-based bug tracking system

 First release: 1998 (open source, for Mozilla project)

 Written in Perl (originally in Tcl)

 Tracks software defects

 when they are first acknowledged

 who is responsible for them

 when they are fixed

 ...

66

A Bugzilla bug’s life

67
From the official Bugzilla documentation

Three parts of SCM

1. Version control systems

a) Local version control

b) Centralized version control

c) Distributed version control

2. Build management systems

3. Bug and issue tracking systems

68

CM Terminology

 Repository, Commit, Update, Checkout, Head

 Branch/Fork, Merge

 Conflicts, Resolving Conflicts

 Tag, Label

 Pull, push, fetch

 Release, Build

 Test Cases, Test Suite, Regression Tests

69

Tools for CM

Software Configuration Management (SCM) Tools

 RCS, CVS, Subversion, Git, Mercurial, Monotone, ArK,
tla (FreeSoftware)

 ClearCase, BitKeeper, SourceSafe (Commercial)

Bug-Tracking Tools

 Bugzilla (FreeSoftware)

 Origo issue tracker

Build Tools

 Make (FreeSoftware)

 Xenofarm (FreeSoftware)

 Tinderbox (FreeSoftware) 70

