
Chair of Software Engineering

Software Architecture

Bertrand Meyer, Carlo A. Furia, Martin Nordio

ETH Zurich, February-May 2011

Lecture 13: Designing for concurrency

(Material prepared with Sebastian Nanz)

For more

Several concurrency courses in the ETH curriculum,
including our (Bertrand Meyer, Sebastian Nanz) “Concepts
of Concurrent Computation” (CCC, Spring semester)

Some of the material here comes from the CCC course.

Good textbooks:

 Kramer

 Herlihy

2

Why is concurrency so important?

Traditionally, specialized area of interest to a few experts:

 Operating systems

 Networking

 Databases

Multicore and the Internet make it relevant to every
programmer!

3

What they say about concurrency

Intel Corporation: Multi-core processing is taking the
industry on a fast-moving and exciting ride into
profoundly new territory. The defining paradigm in
computing performance has shifted inexorably from raw
clock speed to parallel operations and energy efficiency.

Rick Rashid, head of Microsoft Research: Multicore
processors represent one of the largest technology
transitions in the computing industry today, with deep
implications for how we develop software.

Bill Gates: “Multicore: This is the one which will have the
biggest impact on us. We have never had a problem to
solve like this. A breakthrough is needed in how
applications are done on multicore devices.

4

Evolution of hardware (source: Intel)

5

Multiprocessing

• Until a few years ago: systems with one processing unit
were standard

• Today: most end-user systems have multiple processing
units in the form of multi-core processors

• Multiprocessing: the use of more than one processing unit
in a system

• Execution of processes is said to be parallel, as they are
running at the same time

Process 1 CPU 1

Process 2 CPU 2
Instructions

Multitasking & multithreading

Even on systems with a single processing unit programs
may appear to run in parallel:

 Multitasking*

 Multithreading (within a process, see in a few slides)

Multi-tasked execution of processes is said to be
interleaved, as all are in progress, but only one is running
at a time. (Closely related concept: coroutines.)

Process 1

CPU

Process 2

Instructions

*This is common terminology, but “multiprocessing” was
also used previously as a synonym for “multitasking”

Processes

• A (sequential) program is a set of instructions

• A process is an instance of a program that is being
executed

Concurrency

• Both multiprocessing and multithreading are examples of
concurrent computation

• The execution of processes or threads is said to be
concurrent if it is either parallel or interleaved

10

Computation

To perform a computation is

 To apply certain actions

 To certain objects

 Using certain processors

Processor

Actions Objects

Operating system processes

• How are processes implemented in an operating system?

• Structure of a typical process:

• Process identifier: unique ID of a process.

• Process state: current activity of a process.

• Process context: program counter, register values

• Memory: program text, global data, stack, and heap.

Process ID

Code Global data

Register
values

Stack

Heap

Program
counter

The scheduler

A system program called the scheduler controls which
processes are running; it sets the process states:

 Running: instructions are being executed.

 Blocked: currently waiting for an event.

 Ready: ready to be executed, but has not been
assigned a processor yet.

blocked

running ready

Context switch

The context switch

• The swapping of processes on a processing unit by the
scheduler is called a context switch

• Scheduler actions when switching processes P1 and P2:

 P1.set_state (ready)

 Save register values as P1's context in memory

 Use context of P2 to set register values

 P2.set_state (running)

CPU Registers

P1
Context

P2
Context

 Concurrency within programs

• We also want to use concurrency within programs

CPU 1 CPU 2

task 1
task 2

m

n

m + n

CPU 1 CPU 2

task 1

task 2
 m
n

max(m, n)

Sequential execution: Concurrent execution:

compute
 do
 t1.do_task1
 t2.do_task2
 end

Threads (“lightweight processes”)

Make programs concurrent by associating them with
threads

A thread is a part of an operating system process

Private to each thread:

 Thread identifier

 Thread state

 Thread context

 Memory: only stack

Shared with other threads:

 Program text

 Global data

 Heap

Process ID

Code Global data

Register
values

Thread ID1 Thread ID3 Thread ID2

Register
values

Register
values

Stack Stack Stack

Heap

Program
counter

Program
counter

Program
counter

Processes vs threads

Process:

 Has its own (virtual) memory space (in O-O programming, its
own objects)

 Sharing of data (objects) with another process:

 Is explicit (good for reliability, security, readability)

 Is heavy (bad for ease of programming)

 Switching to another process: expensive (needs to back up
one full context and restore another

Thread:

 Shares memory with other threads

 Sharing of data is straightforward

 Simple go program (good)

 Risks of confusion and errors: data races (bad)

 Switching to another thread: cheap

16

17

Amdahl’s Law

n

p
p

speedup





1

1

Parallel
fraction

Sequential
fraction

Number of
processors

18

Example

• Ten processors

• 60% concurrent, 40% sequential

• How close to 10-fold speedup?

17.2

10

6.0
6.01

1




speedup

Source (this slide and next three): M. Herlihy

19

Example

• Ten processors

• 80% concurrent, 20% sequential

• How close to 10-fold speedup?

57.3

10

8.0
8.01

1




speedup

20

Example

• Ten processors

• 90% concurrent, 10% sequential

• How close to 10-fold speedup?

26.5

10

9.0
9.01

1




speedup

21

Example

• Ten processors

• 99% concurrent, 1% sequential

• How close to 10-fold speedup?

17.9

10

99.0
99.01

1




speedup

Concurrent programs in Java

Associating a computation with a thread:

• Write a class that inherits from the class Thread (or
implements the interface Runnable)

• Implement the method run()

class Thread1 extends Thread {
 public void run() {
 // implement task1 here
 }
}
class Thread2 extends Thread {
 public void run() {
 // implement task2 here
 }
}

void compute() {
 Thread1 t1 = new Thread1();
 Thread2 t2 = new Thread2();
 t1.start();
 t2.start();
}

Joining threads

Often the final results of thread executions need to be
combined:

To wait for both threads to be finished, we join them:

The join() method, invoked on a thread t, causes the caller
to wait until t is finished

return t1.getResult() + t2.getResult();

t1.start();
t2.start();
t1.join();
t2.join();
return t1.getResult() + t2.getResult();

Race conditions (1)

Consider a counter class: Assume two threads:

Thread 1:

Thread 2:

class Counter {

 private int value = 0;

 public int getValue() {

 return value;

 }

 public void setValue(int someValue) {

 value = someValue;

 }

 public void increment() {

 value++;

 }

}

x.setValue(0);

x.increment();

int i = x.getValue();

x.setValue(2);

Race conditions (2)

• Because of the interleaving of threads, various results can
be obtained:

Such dependence of the result on nondeterministic
interleaving is a race condition (or data race)

Such errors can stay hidden for a long time and are difficult
to find by testing

25

x.setValue(2)
x.setValue(0)
x.increment()
int i = x.getValue()

x.setValue(0)
x.setValue(2)
x.increment()
int i = x.getValue()

x.setValue(0)
x.increment()
x.setValue(2)
int i = x.getValue()

x.setValue(0)
x.increment()
int i = x.getValue()
x.setValue(2)

i == 1
x.value == ?

i == 3
x.value == ?

i == 2
x.value == ?

i == 1
x.value == ?

Race conditions (2)

• Because of the interleaving of threads, various results can
be obtained:

Such dependence of the result on nondeterministic
interleaving is a race condition (or data race)

Such errors can stay hidden for a long time and are difficult
to find by testing

26

x.setValue(2)
x.setValue(0)
x.increment()
int i = x.getValue()

x.setValue(0)
x.setValue(2)
x.increment()
int i = x.getValue()

x.setValue(0)
x.increment()
x.setValue(2)
int i = x.getValue()

x.setValue(0)
x.increment()
int i = x.getValue()
x.setValue(2)

i == 1
x.value == 1

i == 3
x.value == 3

i == 2
x.value == 2

i == 1
x.value == 2

Synchronization

To avoid data races, threads (or processes) must
synchronize with each other, i.e. communicate to agree on
the appropriate sequence of actions

How to communicate:

 By reading and writing to shared sections of memory
(shared memory synchronization)
In the example, threads should agree that at any one
time at most one of them can access the resource

 By explicit exchange of information (message passing
synchronization)

Mutual exclusion

Mutual exclusion (or “mutex”) is a form of synchronization
that avoids the simultaneous use of a shared resource

To identify the program parts that need attention, we
introduce the notion of a critical section : a part of a
program that accesses a shared resource, and should
normally be executed by at most one thread at a time

Mutual exclusion in Java

• Each object in Java has a mutex lock (can be held only by
one thread at a time!) that can be acquired and released
within synchronized blocks:

• Object lock = new Object();

 synchronized (lock) {
 // critical section
 }

• The following are equivalent:

synchronized type m(args) {

 // body

}

type m(args) {
 synchronized (this) {
 // body
 }
}

Example: mutual exclusion

To avoid data races in the example, we enclose instructions
to be executed atomically in synchronized blocks
protected with the same lock objects

30

synchronized (lock) {

 x.setValue(0);

 x.increment();

 int i = x.getValue();

}

synchronized (lock) {

 x.setValue(2);

}

The producer-consumer problem

Consider two types of looping processes:

 Producer: At each loop iteration, produces a data
item for consumption by a consumer

 Consumer: At each loop iteration, consumes a data
item produced by a producer

Producers and consumers communicate via a shared buffer
(a generalized notion of bounded queue)

Producers append data items to the back of the queue and
consumers remove data items from the front

Condition synchronization

The producer-consumer problem requires that processes
access the buffer properly:

 Consumers must wait if the buffer is empty

 Producers must wait if the buffer is full

Condition synchronization is a form of synchronization where
processes are delayed until a condition holds

In producer-consumer we use two forms of synchronization:

 Mutual exclusion: to prevent races on the buffer

 Condition synchronization: to prevent improper access
to the buffer

Condition synchronization in Java (2)

• The following methods can be called on a synchronized
object (i.e. only within a synchronized block, on the lock
object):

 wait(): block the current thread and release the lock
until some thread does a notify() or notifyAll()

 notify(): resume one blocked thread (chosen
nondeterministically), set its state to "ready"

 notifyAll(): resume all blocked threads

• No guarantee that the notification mechanism is fair

Producer-Consumer problem: Consumer code

34

public void consume() throws InterruptedException {

 int value;

 synchronized (buffer) {

 while (buffer.size() == 0) {

 buffer.wait();

 }

 value = buffer.get();

 }

}

Consumer blocks if buffer.size() == 0 is true (waiting for a
notify() from the producer)

Producer-Consumer problem: Producer code

35

public void produce() {

 int value = random.produceValue();

 synchronized (buffer) {

 buffer.put(value);

 buffer.notify();

 }

}

Producer notifies consumer that the condition
buffer.size() == 0 is no longer true

The problem of deadlock

The ability to hold resources exclusively is central to
providing process synchronization for resource access

Unfortunately, it brings about other problems!

A deadlock is the situation where a group of processes
blocks forever because each of the processes is waiting
for resources which are held by another process in the
group

Deadlock example in Java

Consider the class ... and this code being executed:

37

public class C extends Thread {

 private Object a;

 private Object b;

 public C(Object x, Object y) {

 a = x;

 b = y;

 }

 public void run() {

 synchronized (a) {

 synchronized (b) {

 ...

 }

 }

}}

C t1 = new C(a1, b1);

C t2 = new C(b1, a1);

t1.start();

t2.start();

38

Dining philosophers

Are deadlock & data races of the same kind?

No

Two kinds of concurrency issues (Lamport):

 Safety: no bad thing will happen

 Liveness: some good thing will happen

39

Data from the field

Source for the next few slides:

Learning from Mistakes –

Real World Concurrency Bug
Characteristics

Yuanyuan(YY) Zhou

University of Illinois, Urbana-Champaign

Microsoft Faculty Summit, 2008

See also her paper at ASPLOS 2008

40

41

8 years 10 years 7 years 6 years Bug history

6 4 0.3 2 LOC (M line)

C++ C++ Mainly C C++/C Language

GUI Client Server Server Software Type

OpenOffice Mozilla Apache MySQL

105 real-world concurrency bugs from 4
large open-source programs

2

6

OpenOffice

31

74

Total

16 4 9 Deadlock

41 13 14 Non-deadlock

Mozilla Apache MySQL

Classified based on root causes

Categories

Atomicity violation
The desired atomicity of certain

 code region is violated

Order violation
The desired order between

 two (sets of) accesses is flipped

Others

X

X

Thread 1 Thread 2

Thread 1 Thread 2

Pattern

We should focus on
atomicity violation
and order violation

Bug detection tools
for order violation
bugs are desired

*There are 3-bug overlap between Atomicity and Order

Implications

0

10

20

30

40

50

AtomicityOrder Other

OpenOffice

Mozilla

Apache

MySQL

Note that order violations can be fixed by adding

locks to ensure atomicity with the previous operation

to ensure order. But the root cause is the incorrect

assumption about execution order.

OK

Woops!

101 out of 105 (96%) bugs involve at most
two threads

Most bugs can be reliably disclosed if we
check all possible interleaving between each
pair of threads

Few bugs cannot

Example: Intensive resource competition
among many threads causes unexpected delay

48

SCOOP mechanism

Simple Concurrent Object-Oriented Programming

Evolved through the last two decades

 Comm. ACM paper (1993)

 Chap. 30 of Object-Oriented Software Construction,
2nd edition, 1997

 Piotr Nienaltowski’s ETH thesis, 2008

 Current work by Sebastian Nanz, Benjamin Morandi,
Scott West and other at ETH

 Prototype implementation at ETH

 New implementation (EiffelStudio 6.8)

49

SCOOP preview: a sequential program

transfer (source, target: ACCOUNT;

 amount: INTEGER)

 -- If possible, transfer amount from source to target.

 do

 if source  balance >= amount then

 source  withdraw (amount)

 target  deposit (amount)

 end

 end

Typical calls:

 transfer (acc1, acc2, 100)

 transfer (acc1, acc3, 100)

50

In a concurrent setting, using SCOOP

transfer (source, target: ACCOUNT;

 amount: INTEGER)

 -- If possible, transfer amount from source to target.

 do

 if source  balance >= amount then

 source  withdraw (amount)

 target  deposit (amount)

 end

 end

Typical calls:

 transfer (acc1, acc2, 100)

 transfer (acc1, acc3, 100)

separate

51

A better SCOOP version

transfer (source, target: ACCOUNT;

 amount: INTEGER)

 -- Transfer amount from source to target.

 require

 source  balance >= amount

 do

 source  withdraw (amount)

 target  deposit (amount)

 ensure

 source  balance = old source  balance – amount

 target  balance = old target balance + amount

 end

separate

52 52

put (b : [G] ; v : G)

 -- Store v into b.
 require

 not b.is_full
 do

 …
 ensure

 not b.is_empty
 end

QUEUE BUFFER

my_queue : [T]

…

if not my_queue.is_full then

 put (my_queue, t)

end

BUFFER QUEUE

put

item, remove

53

Object-oriented computation

To perform a computation is

 To apply certain actions

 To certain objects

 Using certain processors

Processor

Actions Objects

54

What makes an application concurrent?

Processor:
Thread of control supporting sequential execution of
instructions on one or more objects

Can be implemented as:

 Computer CPU

 Process

 Thread

 AppDomain (.NET) …

Will be mapped to computational resources

Processor

Actions Objects

55

Feature call: sequential

x.r (a)

Processor

Client Supplier

previous

x.r (a)

next

r (x : A)
 do
 …
 end

56

Feature call: asynchronous

Client Supplier

previous

x.r (a)

next

r (x : A)
 do
 …
 end

Client’s handler Supplier’s handler

57

The fundamental difference

To wait or not to wait:

 If same processor, synchronous

 If different processor, asynchronous

Difference must be captured by syntax:

 x: T

 x: separate T -- Potentially different processor

Fundamental semantic rule: x.r (a) waits for non-
separate x, doesn’t wait for separate x.

58

Consistency rules: avoiding traitors

 nonsep : T

 sep : separate T

 nonsep := sep

 nonsep.p (a)

Traitor!

59

Wait by necessity

No explicit mechanism needed for client to
resynchronize with supplier after separate call.

The client will wait only when it needs to:

 x.f

 x.g (a)

 y.f

 …

 value := x.some_query

Lazy wait (Denis Caromel, wait by necessity)

Wait here!

60

Separate argument rule (1)

Target of a separate call must be formal
argument of enclosing routine:
 put (b: separate BUFFER[T]; value : T)

 -- Store value into buffer.

 do
 b.put (value)

 end

To use separate object:
 buffer : separate BUFFER[INTEGER]

 create buffer

 put (buffer , 10)

61

Separate argument rule (2)

The target of a separate call

must be an argument of the enclosing routine

Separate call: x.f (...) where x is separate

62

Wait rule

A routine call with separate arguments
will execute when all corresponding processors

are available

and hold them exclusively
for the duration of the routine

• Since all processors of separate arguments
are locked and held for the duration of the
routine, mutual exclusion is provided for the
corresponding objects

63

Dining philosophers

class PHILOSOPHER inherit
 PROCESS
 rename
 setup as getup
 redefine step end

feature {BUTLER}
 step
 do
 think ; eat (left, right)
 end

 eat (l, r : separate FORK)
 -- Eat, having grabbed l and r.
 do … end
end

64

Typical traditional (non-SCOOP) code

Condition synchronization

• SCOOP has an elegant way of expressing condition
synchronization by reinterpreting preconditions as wait
conditions

• Completed wait rule:

65

A call with separate arguments waits until:

The corresponding objects are all available

 Preconditions hold

Producer-consumer problem: consumer code

66

• Consumer blocks itself if the condition buffer.size() == 0
is found to be true (waiting for a notify() from the
producer)

 Precondition
becomes wait
condition

item (b: separate BUFFER [T]): T

 require

 not b.is_empty

 do

 Result := b.item

 end

Producer-Consumer problem: Producer code

67

• Very easy to provide a solution for bounded buffers

• No need for notification, the SCOOP scheduler ensures
that preconditions are automatically reevaluated at a later
time

put (b: separate BUFFER [T]; v: T)

 require

 not b.is_full

 local

 value: INTEGER

 do

 b.put (v)

 end

68

put (buf : separate QUEUE [INTEGER] ; v : INTEGER)
 -- Store v into buffer.
 require

 not buf.is_full
 v > 0
 do

 buf.put (v)
 ensure

 not buf.is_empty
 end

...
put (my_buffer, 10)

Contracts

 Precondition becomes
wait condition

For more

Several concurrency courses in the ETH curriculum,
including our (Bertrand Meyer, Sebastian Nanz) “Concepts
of Concurrent Computation” (Spring semester)

Good textbooks:

 Kramer

 Herlihy

69

