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For more 

Several concurrency courses in the ETH curriculum, 
including our (Bertrand Meyer, Sebastian Nanz) “Concepts 
of Concurrent Computation” (CCC, Spring semester) 

 

Some of the material here comes from the CCC course. 

 

Good textbooks: 

 

 Kramer 

 Herlihy 
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Why is concurrency so important? 

Traditionally, specialized area of interest to a few experts: 

 Operating systems 

 Networking 

 Databases 

 

Multicore and the Internet make it relevant to every 
programmer! 
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What they say about concurrency 

Intel Corporation: Multi-core processing is taking the 
industry on a fast-moving and exciting ride into 
profoundly new territory. The defining paradigm in 
computing performance has shifted inexorably from raw 
clock speed to parallel operations and energy efficiency.  

Rick Rashid, head of Microsoft Research: Multicore 
processors represent one of the largest technology 
transitions in the computing industry today, with deep 
implications for how we develop software. 

Bill Gates: “Multicore: This is the one which will have the 
biggest impact on us. We have never had a problem to 
solve like this. A breakthrough is needed in how 
applications are done on multicore devices. 
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Evolution of hardware (source: Intel) 
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Multiprocessing 

• Until a few years ago: systems with one processing unit 
were standard 

• Today: most end-user systems have multiple processing 
units in the form of multi-core processors 

 

 

 

 

 

• Multiprocessing: the use of more than one processing unit 
in a system 

• Execution of processes is said to be parallel, as they are 
running at the same time 

Process 1 CPU 1 

Process 2 CPU 2 
Instructions 



Multitasking & multithreading 

Even on systems with a single processing unit programs 
may appear to run in parallel: 

 Multitasking* 

 Multithreading (within a process, see in a few slides) 

 

 

 

 

Multi-tasked execution of processes is said to be 
interleaved, as all are in progress, but only one is running 
at a time. (Closely related concept: coroutines.) 

Process 1 

CPU 

Process 2 

Instructions 

*This is  common terminology, but “multiprocessing” was 
also used previously as a synonym for “multitasking”  



Processes 

• A (sequential) program is a set of instructions 

• A process is an instance of a program that is being 
executed 



Concurrency 

• Both multiprocessing and multithreading are examples of 
concurrent computation 

• The execution of processes or threads is said to be 
concurrent if it is either parallel or interleaved 
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Computation 

To perform a computation is 

 To apply certain actions 

 To certain objects 

 Using certain processors 

Processor 

Actions Objects 



Operating system processes 

• How are processes implemented in an operating system? 

• Structure of a typical process: 

• Process identifier: unique ID of a process. 

• Process state: current activity of a process. 

• Process context: program counter, register values 

• Memory: program text, global data, stack, and heap. 

Process ID 

Code Global data 

Register 
values 

Stack 

Heap 

Program 
counter 



The scheduler 

A system program called the scheduler controls which 
processes are running; it sets the process states: 

 Running: instructions are being executed. 

 Blocked: currently waiting for an event. 

 Ready: ready to be executed, but has not been 
assigned a processor yet. 

blocked 

running ready 

Context switch 



The context switch 

• The swapping of processes on a processing unit by the 
scheduler is called a context switch 

  

 

 

 

 

• Scheduler actions when switching processes P1 and P2: 

 P1.set_state (ready) 

 Save register values as P1's context in memory 

 Use context of P2 to set register values 

 P2.set_state (running) 

CPU Registers 

P1 
Context 

P2 
Context 



 Concurrency within programs 

• We also want to use concurrency within programs 

  

CPU 1 CPU 2 

task 1 
task 2

 

m 

n 

m + n 

CPU 1 CPU 2 

task 1 

task 2
 m 
n 

max(m, n) 

Sequential execution: Concurrent execution: 

compute 
    do 
        t1.do_task1 
        t2.do_task2 
    end 



Threads (“lightweight processes”) 

Make programs concurrent by associating them with 
threads 

A thread is a part of an operating system process 

Private to each thread: 

 Thread identifier 

 Thread state 

 Thread context 

 Memory: only stack 

Shared with other threads: 

 Program text 

 Global data 

 Heap  

Process ID 

Code Global data 

Register 
values 

Thread ID1 Thread ID3 Thread ID2 

Register 
values 

Register 
values 

Stack Stack Stack 

Heap 

Program 
counter 

Program 
counter 

Program 
counter 



Processes vs threads 

Process: 

 Has its own (virtual) memory space (in O-O programming, its 
own objects) 

 Sharing of data (objects) with another process: 

 Is explicit (good for reliability, security, readability) 

 Is heavy (bad for ease of programming) 

 Switching to another process: expensive (needs to back up 
one full context and restore another 

Thread: 

 Shares memory with other threads 

 Sharing of data is straightforward 

 Simple go program (good) 

 Risks of confusion and errors: data races (bad) 

 Switching to another thread: cheap 
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Amdahl’s Law 

n

p
p

speedup





1

1

Parallel 
fraction 

Sequential 
fraction 

Number of 
processors 
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Example 

• Ten processors 

• 60% concurrent, 40% sequential 

• How close to 10-fold speedup? 

 

17.2

10

6.0
6.01

1




speedup

Source (this slide and next three): M. Herlihy 
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Example 

• Ten processors 

• 80% concurrent, 20% sequential 

• How close to 10-fold speedup? 

 

57.3

10

8.0
8.01

1




speedup
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Example 

• Ten processors 

• 90% concurrent, 10% sequential 

• How close to 10-fold speedup? 

 

26.5

10

9.0
9.01

1




speedup
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Example 

• Ten processors 

• 99% concurrent, 1% sequential 

• How close to 10-fold speedup? 

 

17.9

10

99.0
99.01

1




speedup



Concurrent programs in Java 

Associating a computation with a thread: 

 

 

 

 

 

 

 

 

• Write a class that inherits from the class Thread (or 
implements the interface Runnable) 

• Implement the method run() 

 

class Thread1 extends Thread { 
    public void run() { 
         // implement task1 here 
     } 
} 
class Thread2 extends Thread { 
    public void run() { 
         // implement task2 here 
      } 
} 

void compute() { 
    Thread1 t1 = new Thread1(); 
    Thread2 t2 = new Thread2(); 
    t1.start(); 
    t2.start(); 
} 



Joining threads 

Often the final results of thread executions need to be 
combined: 

 

 

To wait for both threads to be finished, we join them: 

 

 

 

 

 

The join() method, invoked on a thread t, causes the caller 
to wait until t is finished 

return t1.getResult() + t2.getResult(); 

t1.start(); 
t2.start(); 
t1.join(); 
t2.join(); 
return t1.getResult() + t2.getResult(); 



Race conditions (1) 

Consider a counter class: Assume two threads: 

 

Thread 1: 

 

 

 

 

 

Thread 2: 

class Counter { 

    private int value = 0; 

 

    public int getValue() { 

        return value; 

    } 

 

   public void setValue(int someValue) { 

        value = someValue; 

   } 

 

   public void increment() { 

        value++; 

   } 

} 

x.setValue(0); 

x.increment(); 

int i = x.getValue(); 

x.setValue(2); 



Race conditions (2) 

• Because of the interleaving of threads, various results can 
be obtained: 

 

 

 

 

 

 

Such dependence of the result on  nondeterministic 
interleaving is a race condition (or data race) 

Such errors can stay hidden for a long time and are difficult 
to find by testing 
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x.setValue(2) 
x.setValue(0) 
x.increment() 
int i = x.getValue() 

x.setValue(0) 
x.setValue(2) 
x.increment() 
int i = x.getValue() 
 

x.setValue(0) 
x.increment() 
x.setValue(2) 
int i = x.getValue() 
 

x.setValue(0) 
x.increment() 
int i = x.getValue() 
x.setValue(2) 
 

i == 1  
x.value == ? 

i == 3  
x.value == ? 

i == 2  
x.value == ? 

i == 1  
x.value == ? 



Race conditions (2) 

• Because of the interleaving of threads, various results can 
be obtained: 

 

 

 

 

 

 

Such dependence of the result on  nondeterministic 
interleaving is a race condition (or data race) 

Such errors can stay hidden for a long time and are difficult 
to find by testing 
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x.setValue(2) 
x.setValue(0) 
x.increment() 
int i = x.getValue() 

x.setValue(0) 
x.setValue(2) 
x.increment() 
int i = x.getValue() 
 

x.setValue(0) 
x.increment() 
x.setValue(2) 
int i = x.getValue() 
 

x.setValue(0) 
x.increment() 
int i = x.getValue() 
x.setValue(2) 
 

i == 1  
x.value == 1 

i == 3  
x.value == 3 

i == 2  
x.value == 2 

i == 1  
x.value == 2 



Synchronization 

To avoid data races, threads (or processes) must 
synchronize with each other, i.e. communicate to agree on 
the appropriate sequence of actions 

 

How to communicate: 

 By reading and writing to shared sections of memory 
(shared memory synchronization)  
In the example, threads should agree that at any one 
time at most one of them can access the resource 

 

 By explicit exchange of information (message passing 
synchronization) 

 



Mutual exclusion 

Mutual exclusion (or “mutex”) is a  form of synchronization 
that avoids the simultaneous use of a shared resource 

 

 

To identify the program parts that need attention, we 
introduce the notion of a critical section : a part of a 
program that accesses a shared resource, and should 
normally be executed by at most one thread at a time 



Mutual exclusion in Java 

• Each object in Java has a mutex lock (can be held only by 
one thread at a time!) that can be acquired and released 
within synchronized blocks: 

• Object lock = new Object(); 
 
 synchronized (lock) { 
     // critical section 
 } 

• The following are equivalent: 

synchronized type m(args) {  
 
    // body 
 
}  

type m(args) { 
    synchronized (this) { 
        // body 
    } 
} 
 



Example: mutual exclusion 

To avoid data races in the example, we enclose instructions 
to be executed atomically in synchronized blocks 
protected with the same lock objects 
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synchronized (lock) { 

    x.setValue(0); 

    x.increment(); 

    int i = x.getValue(); 

} 

synchronized (lock) { 

    x.setValue(2); 

}  



The producer-consumer problem 

Consider two types of looping processes: 

 Producer: At each loop iteration, produces a data 
item for consumption by a consumer 

 Consumer: At each loop iteration, consumes a data 
item produced by a producer 

 

Producers and consumers communicate via a shared buffer 
(a generalized notion of bounded queue) 

 

Producers append data items to the back of the queue and 
consumers remove data items from the front 

 



Condition synchronization 

The producer-consumer problem requires that processes 
access the buffer properly: 

 Consumers must wait if the buffer is empty 

 Producers must wait if the buffer is full 

 
Condition synchronization is a form of synchronization where 
processes are delayed until a condition holds 

In producer-consumer we use two forms of synchronization: 

 Mutual exclusion: to prevent races on the buffer 

 Condition synchronization: to prevent improper access 
to the buffer 



Condition synchronization in Java (2) 

• The following methods can be called on a synchronized 
object (i.e. only within a synchronized block, on the lock 
object): 

 wait(): block the current thread and release the lock 
until some thread does a notify() or notifyAll() 

 notify(): resume one blocked thread (chosen 
nondeterministically), set its state to "ready" 

 notifyAll(): resume all blocked threads 

 

• No guarantee that the notification mechanism is fair  

 



Producer-Consumer problem: Consumer code 
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public void consume() throws InterruptedException { 

    int value; 

    synchronized (buffer) { 

        while (buffer.size() == 0) { 

            buffer.wait(); 

        } 

        value = buffer.get(); 

    } 

} 

 

 

 

 

 

 

 

 

Consumer blocks if  buffer.size() == 0 is true (waiting for a 
notify() from the producer) 



Producer-Consumer problem: Producer code 
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public void produce() { 

    int value = random.produceValue(); 

    synchronized (buffer) { 

        buffer.put(value); 

        buffer.notify(); 

    } 

} 

 

 

 

 

 

 

 

Producer notifies consumer that the condition 
buffer.size() == 0 is no longer true 



The problem of deadlock 

The ability to hold resources exclusively is central to 
providing process synchronization for resource access 

 

Unfortunately, it brings about other problems! 

 

 

A deadlock is the situation where a group of processes 
blocks forever because each of the processes is waiting 
for resources which are held by another process in the 
group 



Deadlock example in Java 

Consider the class                ... and this code being executed: 

37 

public class C extends Thread { 

    private Object a; 

    private Object b; 

 

    public C(Object x, Object y) { 

        a = x; 

        b = y; 

    } 

    public void run() { 

        synchronized (a) { 

            synchronized (b) { 

                ... 

            } 

        } 

}} 

C t1 = new C(a1, b1); 

C t2 = new C(b1, a1); 

t1.start(); 

t2.start(); 
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Dining philosophers 



Are deadlock & data races of the same kind? 

No 

 

Two kinds of concurrency issues (Lamport): 

 

 Safety: no bad thing will happen 

 

 Liveness: some good thing will happen 
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Data from the field 

Source for the next few slides: 

 

Learning from Mistakes – 

Real World Concurrency Bug 
Characteristics 
 

Yuanyuan(YY)  Zhou 

University of Illinois, Urbana-Champaign 

 

Microsoft Faculty Summit, 2008 

See also her paper at ASPLOS 2008 
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8 years 10 years 7 years 6 years Bug history 

6 4 0.3 2 LOC (M line) 

C++ C++ Mainly C C++/C Language 

GUI Client Server Server Software Type 

OpenOffice Mozilla Apache MySQL 

105 real-world concurrency bugs from 4 
large open-source programs 



2 

6 

OpenOffice 

31 

74 

Total 

16 4 9 Deadlock 

41 13 14 Non-deadlock 

Mozilla Apache MySQL 



Classified based on root causes 

Categories 

Atomicity violation 
The desired atomicity of certain 

     code region is violated 

Order violation 
The desired order between 

     two (sets of) accesses is flipped 

Others  

X 

X 

Thread 1 Thread 2 

Thread 1 Thread 2 

Pattern 



We should focus on 
atomicity violation 
and order violation 

 

Bug detection tools 
for order violation 
bugs are desired 

*There are 3-bug overlap between Atomicity and Order 

Implications 

0

10

20

30

40

50

AtomicityOrder Other

OpenOffice

Mozilla

Apache

MySQL



Note that order violations can be fixed by adding 

locks to ensure atomicity with the previous operation 

to ensure order.  But the root cause is the incorrect 

assumption  about execution order. 



OK 

Woops! 



101 out of 105 (96%) bugs involve at most 
two threads 

Most bugs can be reliably disclosed if we 
check all possible interleaving between each 
pair of threads 

Few bugs cannot 

Example: Intensive resource competition 
among many threads causes unexpected delay 
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SCOOP mechanism 

Simple Concurrent Object-Oriented Programming 
 

Evolved through the last two decades 

 Comm. ACM paper (1993) 

 Chap. 30 of Object-Oriented Software Construction, 
2nd edition, 1997 

 Piotr Nienaltowski’s ETH thesis, 2008 

 Current work by Sebastian Nanz, Benjamin Morandi, 
Scott West and other at ETH 

 Prototype implementation at ETH 

 New implementation (EiffelStudio 6.8) 
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SCOOP preview: a sequential program 

transfer (source, target:                      ACCOUNT; 

   amount: INTEGER) 

  -- If possible, transfer amount from source to target. 

 do 

  if source  balance >= amount then 

   source  withdraw  (amount) 

   target  deposit     (amount) 

  end 

 end 

 
Typical calls: 

  transfer (acc1, acc2, 100) 

  transfer (acc1, acc3, 100)   
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In a concurrent setting, using SCOOP 

transfer (source, target:                      ACCOUNT; 

   amount: INTEGER) 

  -- If possible, transfer amount from source to target. 

 do 

  if source  balance >= amount then 

   source  withdraw  (amount) 

   target  deposit     (amount) 

  end 

 end 

 
Typical calls: 

  transfer (acc1, acc2, 100) 

  transfer (acc1, acc3, 100)   

separate 
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A better SCOOP version 

transfer (source, target:                      ACCOUNT; 

   amount: INTEGER) 

  -- Transfer amount from source to target. 

 require 

   source  balance >= amount  

 do 

  source  withdraw  (amount) 

  target  deposit     (amount) 

 ensure 

  source  balance = old source  balance – amount 

  target  balance = old target balance + amount 

 end 

 

separate 
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put (b :                [G ] ; v : G ) 

  -- Store v into b. 
 require 

  not b.is_full 
 do 

  … 
 ensure 

  not b.is_empty 
  end 

QUEUE   BUFFER   

my_queue :               [T ] 

…  

if not my_queue.is_full then 

 

 

 put (my_queue, t ) 

end 

BUFFER   QUEUE   

put 

item, remove 
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Object-oriented computation 

To perform a computation is 

 To apply certain actions 

 To certain objects 

 Using certain processors 

Processor 

Actions Objects 
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What makes an application concurrent? 

Processor: 
Thread of control supporting sequential execution of 
instructions on one or more objects  

 

Can be implemented as: 

 Computer CPU 

 Process 

 Thread 

 AppDomain (.NET) … 

 

Will be mapped to computational resources 

Processor 

Actions Objects 
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Feature call: sequential 

x.r (a) 

Processor 

Client Supplier 

previous 

x.r (a) 
 
next 

r (x : A) 
 do 
  … 
 end 
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Feature call: asynchronous 

Client Supplier 

previous 

x.r (a) 
 
next 

r (x : A) 
 do 
  … 
 end 

Client’s handler Supplier’s handler 
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The fundamental difference 

To wait or not to wait: 

 If same processor, synchronous 

 If different processor, asynchronous 

Difference must be captured by syntax: 

 x: T 

 x: separate T   -- Potentially different processor 

 

Fundamental semantic rule: x.r (a) waits for non-
separate x, doesn’t wait for separate x. 
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Consistency rules: avoiding traitors 

 

 

 nonsep : T 
 

 sep : separate T 

 

 nonsep := sep 

 nonsep.p (a) 

 

 

Traitor! 
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Wait by necessity 

No explicit mechanism needed for client to 
resynchronize with supplier after separate call. 
 

The client will wait only when it needs to: 

 x.f 

 x.g (a) 

 y.f 

 … 

 value := x.some_query 
 
 

Lazy wait (Denis Caromel, wait by necessity) 
 

Wait here! 
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Separate argument rule (1) 

Target of a separate call must be formal 
argument of enclosing routine: 
 put (b: separate BUFFER[T ]; value : T)  

              -- Store value into buffer. 

         do 
    b.put (value) 

         end 
 

To use separate object: 
 buffer : separate BUFFER[INTEGER ] 

 create buffer 

 put (buffer , 10)  
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Separate argument rule (2) 

The target of a separate call 

must be an argument of the enclosing routine 

Separate call: x.f (...) where x is separate 
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Wait rule 

A routine call with separate arguments 
will execute when all corresponding processors 

are available 
 

and hold them exclusively 
for the duration of the routine 

 

 

 

 

 

 

 

• Since all processors of separate arguments 
are locked and held for the duration of the 
routine, mutual exclusion is provided for the 
corresponding objects 
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Dining philosophers 

class PHILOSOPHER inherit 
 PROCESS 
  rename 
          setup as getup 
  redefine step end 
 
feature {BUTLER} 
 step  
  do 
            think ;   eat (left, right) 
           end  
 
 eat (l, r : separate FORK)  
                -- Eat, having grabbed l and r. 
           do … end  
end 
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Typical traditional (non-SCOOP) code 



Condition synchronization 

• SCOOP has an elegant way of expressing condition 
synchronization by reinterpreting preconditions as wait 
conditions 

• Completed wait rule: 
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A call with separate arguments waits until: 

The corresponding objects are all available 

 Preconditions hold 



Producer-consumer problem: consumer code 
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• Consumer blocks itself if the condition buffer.size() == 0 
is found to be true (waiting for a notify() from the 
producer) 

     Precondition 
becomes wait 
condition 

 

item (b: separate BUFFER [T]): T 

    require 

        not b.is_empty 

   do 

        Result := b.item 

    end 



Producer-Consumer problem: Producer code 
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• Very easy to provide a solution for bounded buffers 

• No need for notification, the SCOOP scheduler ensures 
that preconditions are automatically reevaluated at a later 
time 

put (b: separate BUFFER [T]; v: T) 

    require 

         not b.is_full 

   local 

         value: INTEGER 

    do 

         b.put (v) 

    end 
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put (buf : separate QUEUE [INTEGER ] ; v : INTEGER)  
  -- Store v into buffer. 
 require 

  not buf.is_full 
  v > 0 
 do 

  buf.put (v) 
 ensure 

  not buf.is_empty 
 end 
 
... 
put (my_buffer, 10 ) 
 
 
 

Contracts 

     Precondition becomes 
wait condition 

 



For more 

Several concurrency courses in the ETH curriculum, 
including our (Bertrand Meyer, Sebastian Nanz) “Concepts 
of Concurrent Computation” (Spring semester) 

 

Good textbooks: 

 

 Kramer 

 Herlihy 
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