
Chair of Software Engineering

1

Software Architecture

Bertrand Meyer, Carlo A. Furia, Martin Nordio

ETH Zurich, February-May 2011

Lecture 12: Architectural styles
(partly after material by Peter Müller)

2

Software architecture styles

Work by Mary Shaw and David Garlan at Carnegie-Mellon
University, mid-90s

Aim similar to Design
Patterns work: classify styles
of software architecture

Characterizations are more
abstract; no attempt to
represent them directly as
code

3

Software architecture styles

An architectural style is defined by

 Type of basic architectural components
 (e.g. classes, filters, databases, layers)

 Type of connectors
 (e.g. calls, pipes, inheritance,
 event broadcast)

4

Architecture styles

Overall system organization:
 Hierarchical
 Client-server
 Cloud-based
 Peer-to-peer

Individual program structuring:
 Control-based

• Call-and-return (Subroutine-based)
• Coroutine-based

 Dataflow:
• Pipes and filters
• Blackboard
• Event-driven

 Object-oriented

5

Hierarchical

Each layer provides services to the layer above it and
acts as a client of the layer below

Each layer collects services at a particular level of
abstraction

A layer depends only on lower layers

 Has no knowledge of higher layers

Example

 Communication protocols

 Operating systems

6

Hierarchical

Components

 Group of subtasks which implement an abstraction
at some layer in the hierarchy

Connectors

 Protocols that define how the layers interact

7

Hierarchical: examples

THE operating system (Dijkstra)

The OSI Networking Model

 Each level supports communication at a level of
abstraction

 Protocol specifies behavior at each level of
abstraction

 Each layer deals with specific level of communication
and uses services of the next lower level

Layers can be exchanged

 Example: Token Ring for Ethernet on Data Link
Layer

8

OSI model layers

The system you are designing

Data transformation services, such as
byte swapping and encryption

Initializes a connection, including
authentication

Reliably transmits messages

Transmits & routes data within network

Sends & receives frames without error

Sends and receives bits over a channel Physical

Data Link

Network

Transport

Session

Presentation

Application

9

Hierarchical style example

Physical

Data Link

Network

Transport

Session

Presentation

Application

Physical

Data Link

Network

Transport

Session

Presentation

Application

Physical

Data Link

Network

Use service of

lower layer

Virtual

connection

10

Hierarchical: discussion

Strengths:
 Separation into levels of abstraction; helps partition

complex problems
 Low coupling: each layer is (in principle) permitted to

interact only with layer immediately above and under
 Extendibility: changes can be limited to one layer
 Reusability: implementation of a layer can be reused

Weaknesses:
 Performance overhead from going through layers
 Strict discipline often bypassed in practice

11

Client-server

Components

 Subsystems, designed as independent processes

 Each server provides specific services, e.g. printing,
database access

 Clients use these services

Connectors

 Data streams, typically over a communication
network

Network Server

Client

Client

Client

12

Client -server example: databases

Clients: user applications
 Customized user interface
 Front-end processing of data
 Initiation of server remote procedure calls
 Access to database server across the network

Server: DBMS, provides:

 Centralized data management
 Data integrity and database consistency
 Data security
 Concurrent access
 Centralized processing

13

Client-server variants

Thick / fat client

 Does as much processing as possible

 Passes only data required for communications and
archival storage to the server

 Advantage: less network bandwidth, fewer server
requirements

Thin client

 Has little or no application logic

 Depends primarily on server for processing

 Advantage: lower IT admin costs, easier to secure,
lower hardware costs.

14

Client-server: discussion

Strengths:
 Makes effective use of networked systems
 May allow for cheaper hardware
 Easy to add new servers or upgrade existing servers
 Availability (redundancy) may be straightforward

Weaknesses:
 Data interchange can be hampered by different data

layouts
 Communication may be expensive
 Data integrity functionality must be implemented for

each server
 Single point of failure

15

Client-server variant: cloud computing

The server is no longer on a company’s network, but hosted
on the Internet, typically by a providing company

Example: cloud services by Google, Amazon, Microsoft

Advantages:

 Scalability

 Many issues such as security, availability, reliability
are handled centrally

Disadvantages:

 Loss of control

 Dependency on Internet

16

Peer-to-peer

Similar to client-server style, but each component is both
client and server
Pure peer-to-peer style

 No central server, no central router
Hybrid peer-to-peer style

 Central server keeps information on peers and
responds to requests for that information

Examples
 File sharing applications, e.g., Napster
 Communication and collaboration, e.g., Skype

17

Peer-to-peer: discussion

Strengths:
 Efficiency: all clients provide resources
 Scalability: system capacity grows with number of clients
 Robustness

• Data is replicated over peers
• No single point of failure (in pure peer-to-peer

style)

Weaknesses:
 Architectural complexity
 Resources are distributed and not always available
 More demanding of peers (compared to client-server)
 New technology not fully understood

18

Call-and-return

Components: Objects

Connectors: Messages (routine invocations)

Key aspects

 Object preserves integrity of representation
(encapsulation)

 Representation is hidden from client objects

Variations

 Objects as concurrent tasks

19

Call-and-return

Strengths:
 Change implementation without affecting clients
 Can break problems into interacting agents
 Can distribute across multiple machines or networks

Weaknesses:
 Objects must know their interaction partners; when partner

changes, clients must change
 Side effects: if A uses B and C uses B, then C’s effects on B

can be unexpected to A

20

Subroutines

Similar to hierarchical structuring at the program level

Functional decomposition

A

B C D

E1 I1 C2 I2 I

Topmost functional abstraction

21

Subroutines

Advantages:

 Clear, well-understood decomposition

 Based on analysis of system’s function

 Supports top-down development

Disadvantages:

 Tends to focus on just one function

 Downplays the role of data

 Strict master-slave relationship; subroutine loses
context each time it terminates

 Adapted to the design of individual functional
pieces, not entire system

22

Coroutines

A more symmetric relationship than subroutines

Particularly applicable to simulation applications

A simulated form of concurrency

23

Dataflow systems

Availability of data controls the computation

The structure is determined by the orderly motion of data
from component to component

Variations:

 Control: push versus pull

 Degree of concurrency

 Topology

24

Dataflow: batch-sequential

Frequent architecture in scientific computing and business
data processing

Components are independent programs

Connectors are media, typically files

Each step runs to completion before next step begins

Program Program Program

Component

File

25

Batch-sequential

History: mainframes and magnetic tape

Business data processing

 Discrete transactions of predetermined type and
occurring at periodic intervals

 Creation of periodic reports based on periodic data
updates

Examples

 Payroll computations

 Tax reports

26

Dataflow: pipe-and-filter

Component: filter

 Reads input stream (or streams)

 Locally transforms data

 Produces output stream (s)

Connector: pipe

 stream, e.g., FIFO buffer

Filter
Filter

Filter
Filter

Filter

Pipe

27

Pipe-and-filter

Data processed incrementally as it arrives

Output can begin before input fully consumed

Filters must be independent: no shared state

Filters don’t know upstream or downstream filters

Examples

 lex/yacc-based compiler (scan, parse, generate…)

 Unix pipes

 Image / signal processing

28

Push pipeline with active source

Source of each pipe pushes data downstream

Example with Unix pipes:

 grep p1 * | grep p2 | wc | tee my_file

dataSource filter1 filter2 dataSink

write(data)

f1(data)

write(data)

f2(data)

Active
source

Push

29

Pull pipeline with active sink

dataSink filter1 filter2 dataSource

data := next
data := next

f1 (data)

data := next

f2 (data) Active

sink
Pull

 Sink of each pipe pulls data from upstream

 Example: Compiler: t := lexer.next_token

Pull Pull

30

Combining push and pull

Synchronization required:

dataSink filter1 filter2 dataSource

data := read()

f1(data)

data := read()

f2(data)

Push

Pull

write(data)

Active
filter

31

Pipe-and-filter: discussion

Strengths:
 Reuse: any two filters can be connected if they agree on

data format
 Ease of maintenance: filters can be added or replaced
 Potential for parallelism: filters implemented as separate

tasks, consuming and producing data incrementally

Weaknesses:
 Sharing global data expensive or limiting
 Scheme is highly dependent on order of filters
 Can be difficult to design incremental filters
 Not appropriate for interactive applications
 Error handling difficult: what if an intermediate filter

crashes?
 Data type must be greatest common denominator, e.g. ASCII

32

Dataflow: event-based (publish-subscribe)

A component may:
 Announce events
 Register a callback

for events of other
components

Connectors are the
bindings between event
announcements and
routine calls (callbacks)

Routine Routine

Routine

Routine

Routine

Routine

Routine

33

Event-based style: properties

Publishers of events do not know which components
(subscribers) will be affected by those events

Components cannot make assumptions about ordering of
processing, or what processing will occur as a result of
their events

Examples

 Programming environment tool integration

 User interfaces (Model-View-Controller)

 Syntax-directed editors to support incremental
semantic checking

34

Event-based style: example

Integrating tools in a shared environment

Editor announces it has finished editing a module

 Compiler registers for such announcements and
automatically re-compiles module

 Editor shows syntax errors reported by compiler

Debugger announces it has reached a breakpoint

 Editor registers for such announcements and
automatically scrolls to relevant source line

35

Event-based: discussion

Strengths:
 Strong support for reuse: plug in new components by

registering it for events
 Maintenance: add and replace components with minimum

effect on other components in the system

Weaknesses:
 Loss of control:

 What components will respond to an event?
 In which order will components be invoked?
 Are invoked components finished?

 Correctness hard to ensure: depends on context and
order of invocation

36

Data-centered (repository)

Components

 Central data store component represents state

 Independent components operate on data store

Repository

Knowledge
Source

Knowledge
Source

Knowledge
Source

Computation

Direct
access

37

Data-Centered: discussion

Strengths:
 Efficient way to share large amounts of data
 Data integrity localized to repository module

Weaknesses:
 Subsystems must agree (i.e., compromise) on a

repository data model
 Schema evolution is difficult and expensive
 Distribution can be a problem

38

Blackboard architecture

Interactions among knowledge sources solely through
repository

Knowledge sources make changes to the shared data that
lead incrementally to solution

Control is driven entirely by the state of the blackboard

Example

 Repository: modern compilers act on shared data:
symbol table, abstract syntax tree

 Blackboard: signal and speech processing

39

Blackboard architecture: example

The EVE architecture

40

The EVE architecture (ETH chair of SE)

Arbiter

AutoProof

Alias
analysis

AutoFix

Test case
generation

EVE Test
execution

Test results

Inter.
prover

Sep. logic
prover

AutoTest

Invariant
inference

Invariant
inference

Suggestions

Suggestions

41

Interpreters

Architecture is based on a virtual machine produced in
software

Special kind of a layered architecture where a layer is
implemented as a true language interpreter

Components

 “Program” being executed and its data

 Interpretation engine and its state

Example: Java Virtual Machine

 Java code translated to platform independent
bytecode

 JVM is platform specific and interprets the
bytecode

42

Object-oriented

Based on analyzing the types of objects in the system and
deriving the architecture from them

Compendium of techniques meant to enhance extendibility
and reusability: contracts, genericity, inheritance,
polymorphism, dynamic binding…

Thanks to broad notion of what an “object” is (e.g. a
command, an event producer, an interpreter…), allows many
of the previously discussed styles

43

Conclusion: assessing architectures

General style can be discussed ahead of time

Know pros and cons

Architectural styles Patterns Components

