
Chair of Software Engineering

Software Architecture

Lecture 16:
UML – Unified Modeling Language

Bertrand Meyer, Carlo A. Furia, Martin Nordio
(Christian Estler)

ETH Zurich, February-May 2011

2

Why do we need models?

Problem
domain

Code

Implementation

Ideal world...

Problem
domain

Implementation

Reality

Code

3

Why do we need models?

 Models are abstractions of
„the real thing“

 They hide complexity by looking
at a problem from a certain
perspective

 Focus on relevant parts

 Ignoring irrelevant details

 What is relevant depends
on the model

 Example: to model the main
components of a car, we do not
need internal details of the
engine.

Problem
domain

Code

Model

abstract
from

abstract
from

4

Why model software?

 Why is code itself not a good model?

 Software is getting increasingly more complex

 Windows XP: ~40 millions lines of code

 A single programmer cannot manage this amount of
code in its entirety

 Code is not easily understandable by developers who
did not write it

 We need simpler representations for complex systems

 Modeling is a means for dealing with complexity

5

UML - Unified Modeling Language

 Unified Modeling Language (UML)

 General purpose modeling language
(for [OO software] systems)

 Today‟s de-facto standard in Industry

 Sine ‟97, UML is defined/evolved by the
Object Management Group (OMG)

 Founded 1989 by IBM, Apple, Sun, …

 Microsoft joined 2008

 Today more than 800 members

http://www.uml.org/

6

UML - Unified Modeling Language

Authors: The Three Amigos

 Grady Booch James Rumbaugh Ivar Jacobson

7

Why “Unified” Modeling Language?

8

What is UML?

Specification: the language is supposed to be simple
enough to be understood by the clients

 Visualization: models can be represented
graphically

Construction: the language is supposed to be
precise enough to make code generation possible

Documentation: the language is supposed to be
widespread enough to make your models
understandable by other developers

UML is a standardized language for specifying,
visualizing, constructing and documenting

(software) systems

9

What is UML?

 UML defines

 Entities of models and their (possible) relations

 Different graphical notations to visualize structure
and behavior

 A model in UML consist of

 Diagrams

 Documentation which complements the diagrams

10

What UML is not !

 Programming language

 this would bound the language to a specific
computing architecture

 however code generation is encouraged

Software development process

 Choose your own process, (e.g. Waterfall-model, V-model, …)

 Use UML to model & document

CASE tool specification

 however tools do exist: Sun, IBM Rose, Microsoft
Visio, Borland Together etc.

11

Diagrams in UML

 UML currently defines 14 types of diagrams

 7 types of Structure Diagrams

 7 types of Behavior Diagrams

 Different diagrams provide different levels of
abstraction

 High-level structure vs. low-level structure

Example: components vs. objects

 High-level behavior vs. low-level behavior

Example: use-case vs. feature-call sequence

12

Diagrams in UML

13

Case study*

 ETH cafeteria wants to introduce
a card-based payment system

 Students upload money to their
card using a special automaton
(similar to an ATM)

 Using their cards, students pay
cashless in the cafeteria

* inspired by: http://www.fbi.h-da.de/labore/case/uml.html

14

Use Case diagram

 Use Case diagrams

 High-level abstraction of the system„s external
behavior

 From the client„s perspective

 What the client plans to do with the system

 Basic elements of a Use Case diagram:

Actor name

Use Case
name

System
name

Task that
should be

executed by
the planned

system

Person or
System that

interacts with
the planned

system

Boundaries of
the planned

system

15

Use Case diagram - Example

 Use Case diagram for the payment system

Pay Food

Client Load Card

Log
Transaction

<<include>>

<<include>>

Caf_Pay

Teller

Accounting

Association
between Actor
and Use Case

Stereotype

Dependency
between Use Cases

16

Use Case diagrams: include-association

<<include>> stereotype to include use cases:

 reusing common functionality, no duplicates

“Pay Food” and “Load Card” use the functionality
provided by “Log Transaction”

Pay Food

Client

Load Card
Log

Transaction

<<include>>

<<include>>

17

Use Case diagrams: extend-association

<<extend>> stereotype to provide special case

Normal case specifies point at which the behavior may
diverge (extension point)

Extending case specifies condition under which the special
case applies (as entry condition)

Pay Food
Client

Refuse
Payment

<<extend>>
Not enough
money

18

Elements of Use Case diagrams

 Entities:

 actors

 use cases

 Relations:

 association between an
actor and a use case

 generalization between
actors

 generalization between
use cases

 dependencies between
use cases

 Comments:

 system boundaries

Actor 1

Use Case 1

Actor 2

Use Case 3

Use Case 4

Use Case 2

<<include>>

Use Case 5

<<extend>>

19

Use Case specification

 Each Use Case shown in a diagram should be
accompanied by a textual specification

 The specification should follow the scheme:

 Use Case name

 Actors

 Entry Condition

 Normal behavior

 Exceptions

 Exit Condition

 Special Requirements (e.g. non-functional requirements)

20

Use Case specification

 Example for „ Pay Food“ Use Case

Name: Pay Food

Actors: Client, Teller

Entry Condition: Client has food and wants to pay it

Normal behavior: Teller types in food; Total amount is shown on
display; Client puts card into reading device; Amount gets withdrawn;
If not enough money on card, then an error message is shown; Return
card to client

Exceptions: If card is not readable, then show error message and
return card; If power failure while card in reading device, wait until
power is back and return card – payment needs to be redone

Exit Condition: Client has paid the food and gets the card back

21

Diagrams in UML

22

Activity diagrams

 Activity diagrams are used to model (work)flows

 They are used visualize complex behavior, e.g.

 Business process

 Algorithms (though less common)

 Tokens are used to determine the flow, similar to
Petri-nets

 A common usage: detailed modeling of Use Cases

23

Elements of Activity diagrams

 Action: atomic element, no
further splitting possible

 Activity: can contain activities,
actions, control nodes

 Control nodes: used to denote
control struture in the flowgraph

Action name

Action2

Action1 In-
Param

activity name

Out-
Param

Allows
refinement

Initial node:
start of a flow

Splitting
node

Synchroniza
tion node

End node:
terminates the

activity

Decision- /
Merging node

24

An activity diagram for the case study

Type in food

Activity Pay_Food

Display food costs

Display card amount

Read card

Insert card

compare

Withdraw amount

Remove card

Display error

Reverse entry

[sufficient amount]

[insufficient
amount]

Pay Desk Display Card Reader

25

Diagrams in UML

26

UML Class diagrams

 Keep in mind:

 Use Cases represent an external view of the
system‟s behavior

 Classes represent inner structure of the system

 No correlation between use cases and classes

 Class diagrams are used at different levels of
abstraction with different levels of details

 Early phase: identifying classes and their relations
in the problem domain (high-level, no
implementation details)

 Implementation phase: high level of detail
(attributes, visibility, …), all classes relevant to
implement the system

27

Classes

A class encapsulates state (attributes) and behavior
(operations)

 Each attribute has a type

 Each operation has a signature

The class name is the only mandatory information

Cafeteria_Card
amount : Float
Id: String

get_amount(): Integer
get_id(): String
withdraw(Integer)

Name

Type

Signature

Operations

Attributes

28

More on classes

Valid UML class diagrams

Corresponding BON diagram

 No distinction between attributes
and operations
(uniform access principle)

Cafeteria_Card

Amount
id
get_amount()
get_id()

Cafeteria_Card

 Cafeteria_Card

get_amount
get_id

 NONE
Amount
id

29

More on classes

 Abstract classes have a italicized class name
or {abstract} property (also applicable to operations)

OR

 Parameterized classes

Card

id

get_id()

Card
{abstract}
id

get_id()

List

items: T[0.. k]

T, k: Integer

Address _Book
<<bind>> <T->Address, k-> 250>

30

Interface classes

 Interface classes have a keyword <<interface>>

 Interfaces have no attributes

 Classes implement an interface using an implementation
relation

<<interface>>
ICard_Reader

read()
write()

ICard_Reader

read()
write()

31

Generalization and specialization

 Generalization expresses a
kind-of (“is-a”) relationship

 Generalization is implemented
by inheritance

 The child classes inherit
the attributes and
operations of the parent
class

 Generalization simplifies the
model by eliminating
redundancy

Card

Cafeteria_Card

Superclass

Subclass

32

Associations

 A line between two classes denotes an association

 An association is a type of relation between classes

 Objects of the classes can communicate using the
association, e.g.

 Class A has an attribute of type B

 Class A creates instances of B

 Class A receives a message with argument of type B

Class A Class B
uses

Optional name
Optional reading

direction

Role A Role B

Multiplicity Multiplicity

Optional role
Optional multiplicity

33

Association multiplicity

 Multiplicity denotes how many objects of the class take
part in the relation

 1-to-1

 1-to-many

 many-to-many

City Country
1 1 is capital of

Mother Child
1..*

Person Company
works for * *

34

Association roles

 Different instances of an class can be differentiate
using roles

 Example: Invoice and shipping address are both
addresses

 Example: Position hierarchy

Order Address

Invoice add.

Shipping add.

Invoice address for

Shipping address for

0..1

1

Position

subordination

*

0..1 chief

subordinate

35

Special associations

 Aggregation – “part-of” relation between objects

 Component can be part of multiple aggregates

 Component can be created and destroyed
independently of the aggregate

 Composition – strong aggregation

 A component can only be part of a single aggregate

 Exists only together with the aggregate

Curriculum Course
*

TicketMachine ZoneButton
3

Aggregate
Component

36

More on associations

 Ordering of an end – whether the objects at this end
are ordered

Changeability of an end – whether the set of objects at
this end can be changed after creation

Polygon Point
3..*

{ordered} {frozen, ordered}

37

Navigability of association

 Associations can be directed

 Direction denotes whether objects can be accessed
through this association

Card Card_Reader

Card Card_Reader

Card Card_Reader

Card knows about
Card_Reader

Card_Reader knows
about Card

Card and Card_Reader
know about each other

38

Class diagram for the case study

ETH_Card
id

Cafeteria_Card
amount
read()
write()

Pay_Automaton

Pay_Desk

input_food()
compare()

Display

show_Amount()
show_Error()

Card_Reader

card_insert()
card_Amount()

Money_Slot

money_In()
money_Out()
validate_Bill()

1
1

1

1 1 1

1
1

1 1

1

1

1

1

39

Diagrams in UML

40

UML Object diagrams

 An Object diagram is used to denote a snapshot of the
system at runtime

 It shows the existing objects, their attribute values
and relations at that particular point of time

 42: Cafeteria_Card

id=235813
amount=25.50

pd1: Pay_Desk

Link: name or role-
name are optinal

Object identifier

41

Diagrams in UML

42

UML packages

A package is a UML mechanism
for organizing elements into
groups

 Usually not an application
domain concept

 Increase readability of
UML models

Decompose complex systems
into subsystems

 Each subsystem is
modeled as a package

R

Q

P

<<import>>

<<import>>

43

Diagrams in UML

44

Component diagrams

 Entities:

 components
• programs
• documents
• files
• libraries
• DB tables

 interfaces

 classes

 objects

 Relations:

 dependency

 association
(composition)

 implementation

<<component>>

DataBase

<<component>>

Business

ODBC

<<component>>

Business

<<provided interfaces>>
Interface_m

<<required interfaces>>
Inteface_n

<<realization>>
Class_A
Class_B

<<artifact>>
library.jar

45

Diagrams in UML

46

Overview

 We will now look at two more diagrams which are used to
model the behavior of a system.

 Sequence diagrams: used to describe the interaction of
objects and show their “communication protocol”

 State diagrams: focus on the state of an object (or
system) an how it changes due to events

47

Sequence diagrams

:Client :Card_Reader

insertCard()

insertPIN()

Time

 Entities:

 objects (including
instances of actors)

 Relations:

 message passing

 Sugar:

 lifelines

 activations

 creations

 destructions

 frames

Actors and
objects:
columns

Lifeline:
dashed
line

Activation
s: narrow
rectangles

Messages: arrows

48

Nested messages

The source of an arrow indicates the activation which sent
the message

An activation is as long as all nested activations

:Client :C_Reader

insertCard()

:ClientData

check(data)

ok / nok

:Display

displayMessage(text)

Data flow

49

Creation and destruction

Creation is denoted by a message arrow pointing to the
object

In garbage collection environments, destruction can be
used to denote the end of the useful life of an object

:Terminal

:Session

start()

Destruction

log()

close()

Creation

50

From Use Cases to Sequence diagrams

Sequence diagrams are derived from flows of events of
use cases

An event always has a sender and a receiver

 Find the objects for each event

Relation to object identification

 Objects/classes have already been identified during
object modeling

 Additional objects are identified as a result of
dynamic modeling

51

:Money_Slot
:Client

:Card_Reader

insert card

:Caf_Card

Read ()

:Display

Show_Amount()

draw card

amount

Example Sequence diagram

insert money
validate()

Show_Amount()

52

Example Sequence diagram

 The diagram shows only the successful case

 Exceptional case could go either on another diagram or
could be incorporated to this one

 Sequence diagrams show main scenario and “interesting”
cases

 interesting: exceptional or important variant
behavior

 Need not draw diagram for every possible case

 would lead to too many diagrams

53

Interaction frames

:Item :Container :Processor

process()

increase()

loop

[for each item]

decrease()

alt

[value < 100]

[else]

54

Fork structure

The dynamic behavior is placed in a single object, usually
a control object

It knows all the other objects and often uses them for
direct queries and commands

<<Control>>

55

Stair structure

The dynamic behavior is distributed
 Each object delegates some responsibility to other

objects
 Each object knows only a few of the other objects

and knows which objects can help with a specific
behavior

56

Fork or stair?

Object-oriented supporters claim that the stair structure
is better

 The more the responsibility is spread out, the
better

Choose the stair (decentralized control) if

 The operations have a strong connection

 The operations will always be performed in the same
order

Choose the fork (centralized control) if

 The operations can change order

 New operations are expected to be added as a
result of new requirements

57

Diagrams in UML

58

State Machine Diagrams

 UML State Machine Diagrams are a powerful notation to
model finite automata

 It shows the states which an object or a (sub)system –
depending on the level of abstraction – can have at
runtime

 It also shows the events which trigger a change of state

59

State Machine diagrams

 Entities:

 states: name, activity, entry/exit action

 Relations:

 transitions between states: event, condition, action

State 1

do / activity
entry / action
exit / action

State 2

do / activity
entry / action
exit / action

event (arg) [condition] / action

States:
rounded

rectangles

Transitions:
arrows Start

marker

End
marker

60

State Machine diagram for the case study

Request money

do / increase amount
entry / validate money

Card check

Remember: event (arg) [condition] / action

Ready

Load card

/ return_card

[Card = !OK]
/ return_card

Insert_Card

[Card = OK]

Cancel/ return_card

Insert_Money Done

61

Composite/nested State Machine diagrams

Activities in states can be composite items that denote
other state diagrams

Sets of substates in a nested state diagram can be
denoted with a superstate

 Avoid spaghetti models

 Reduce the number of lines in a state diagram

62

State diagrams: example composite state

Off

On

Working

Blinking

Red
Yellow

Yellow
Green

Red Green

TurnOn

TurnOff

SwitchOn

SwitchOff

after 3 sec

after 45 sec after 5 sec

after 30 sec

TrafficLight

63

Example: superstate

Idle
entry / clear balance

CollectMoney

TicketSelected
entry / compute change

ExactlyPaid
do / dispense ticket

OverPaid
do / dispense change

insCoin(amount) / add to balance

selectTicket(tkt)

[change > 0] [change = 0]

[change < 0]

[change
dispensed]

[ticket
dispensed]

Superstate

64

Expanding the superstate

Transitions from other states to the superstate enter the
first substate of the superstate

Transitions to other states from a superstate are
inherited by all the substates (state inheritance)

do / store coins do / issue ticket do / print ticket

ExactlyPaid
do / dispense ticket

[change = 0]

[change

dispensed]

[ticket

dispensed]

Dispense as atomic
activity

Dispense as
composite
activity

65

State diagram vs. Sequence diagram

State diagrams help to identify

 Changes to an individual object over time

Sequence diagrams help to identify

 The temporal relationship between objects

 Sequence of operations as a response to one or more
events

66

Diagrams in UML

67

Practical tips

 Create component diagrams only for large, distributed
systems

 Create state diagrams only for classes with complex,
interesting behavior (usually classes representing entities
from the problem domain or performing control)

 Create activity diagrams for complex algorithms and
business processes (not for every operation)

 Create sequence diagrams for nontrivial collaborations
and protocols (not for every scenario)

 Don‟t put too much information on a diagram

 Choose the level of abstraction and maintain it

