
Tschau Sepp
LOGIC Sub-Component
Software Requirements Specification

• Authors:
Alexandru Dima 1

Olivier Clerc 2

Alejandro Garćıa 3

• Document number:
TS-LOGIC-SRS-001

• Total number of pages:
30

• Date:
Tuesday 3rd November, 2009

• Location:
Zürich, Switzerland

1E-mail: adima@student.ethz.ch
2E-mail: clerco@student.ethz.ch
3E-mail: garciaa@student.ethz.ch

Contents

1 Introduction 2
1.1 Purpose . 2
1.2 Scope . 2
1.3 References . 4
1.4 Overview . 4

2 Overall description 4
2.1 Product perspective . 4
2.2 Product functions . 5
2.3 User characteristics . 7
2.4 Constraints . 7
2.5 Assumptions and dependencies 8

3 Specific requirements 9
3.1 Functional . 10

3.1.1 General . 10
3.1.2 Master mode . 11
3.1.3 Slave mode . 13
3.1.4 Initial Game State . 14
3.1.5 Rules of the game . 15
3.1.6 Drawing Cards Due to A 7 18
3.1.7 Announcements . 19
3.1.8 Place Numbers . 19
3.1.9 Drawing Stack Restocking 20
3.1.10 Stopping Criteria . 20

3.2 Non-Functional . 21

A System Interfaces 23
A.1 The TS LOGIC Class . 23
A.2 The TS GUI Class . 24

A.2.1 Interact with LOGIC sub-component 24
A.2.2 User interaction handler 24
A.2.3 Change the visualization 25
A.2.4 Attribute . 26

A.3 The TS NET Class . 27
A.4 Message Passing Diagram . 28

B License Agreement 29

Revision & Sign-off Sheet
Date Author Version Change Reference

2009-10-17 Alejandro Garćıa 0.1 Adding structure
2009-10-18 Olivier Clerc 0.2 Writing first draft
2009-10-18 Alexandru Dima 0.3 Writing first draft
2009-10-26 Olivier Clerc 0.4 Review and Rewriting
2009-10-26 Alexandru Dima 0.5 Adding requirements
2009-10-26 Alejandro Garćıa 0.6 Rewriting Overall description
2009-10-27 Alexandru Dima 1.0 Final version
2009-11-03 Alejandro Garćıa 1.1 Appendix

1 INTRODUCTION

1 Introduction

1.1 Purpose

This document represents the Software Requirements Specification (SRS) for
the LOGIC sub-component of the Tschau Sepp Game Component. It is designed
and written for the stake holders, such as the teaching assistants, professors and
developers involved in the project. Its purpose is to describe the scope, both
the functional and non-functional software requirements, as well as the design
constraints of the whole LOGIC sub-component. Furthermore, this document
shows how the system’s interfaces are designed in detail.

1.2 Scope

The Tschau Sepp Game Component is an implementation of the Swiss card
game Tschau Sepp to be used by the overall Multiplayer Card Games system.
For a better description of the scope of the system, the Tschau Sepp Game
Component Scope Document should be consulted.

The scope of the LOGIC sub-component is to simulate a Tschau Sepp game
between multiple players by maintaining the game state and by enforcing the
rules of the game. Issues related to how the game is shown on the screen or
how the involved computers communicate in detail via network lie outside of
the scope of this sub-component.

2

1.2 Scope 1 INTRODUCTION

The following table explains the key terms and abbreviations used in the docu-
ment:

Term Definition
Player A person who can interact with the game application that has

been started and is not terminated.
User A potential player of the game.

Server Refers to the Multiplayer Card Games server.
Client Refers to the whole Tschau Sepp Game Component that is con-

nected to the Multiplayer Card Games server.
LOGIC A sub-component of the Tschau Sepp Game Component that is

responsible for maintaining the game’s logic.
GUI A sub-component of the Tschau Sepp Game Component that is

responsible for displaying all the relevant information to the player
and receiving his/her actions. For this, graphical icons, text boxes
and buttons are used. Furthermore, this sub-component may con-
tain plugins, such as a chat system.

NET A sub-component of the Tschau Sepp Game Component that is
responsible for sending and receiving messages between the NET
sub-components that are situated on the other player’s computers.

Master A mode in which the LOGIC sub-component can operate. In this
mode it is the one who hosts the binding game state and changes
it according to the received players’ actions. It also informs the
other LOGIC sub-components about the current game state.

Slave A mode in which the LOGIC sub-component can operate. In this
mode it merely forwards the associated player’s actions that it re-
ceives to the LOGIC sub-component in Master mode and maintains
a copy of the game state.

Message Information that travels between components and between com-
puters.

Game Host The computer whose LOGIC sub-component is in Master mode.
Player Action Refers to an atomic act a player can make. E.g. playing exactly

one card, saying an announcement, quitting the game. It does
not stand for a set of acts that constitute a player’s turn.

Associated Player Refers to the player that is sitting on the computer that is running
the instance of the LOGIC sub-component.

Announcement A player action that has to be done just before the last or second
last card is played. This means saying the words ”Tschau” or
”Sepp”, respectively.

Playing stack Represents the collection of cards where players have to play cards
on top of. The cards are face-up and stacked on top of each other,
with the latest played card visible on top.

Drawing stack Represents the collection of cards where players have to draw cards
from. The cards are face-down and stacked on top of each other,
with the next card to be drawn on top.

3

1.3 References 2 OVERALL DESCRIPTION

1.3 References

The structure and format of this document was chosen according to the IEEE
Std 830-1998 4 standard, as well as previous year’s documents from the DOSE 5

course.

The information in this document is primarily based on the Tschau Sepp
Game Component Scope Document, which was previously released by the whole
group. The SRS of both the GUI and NET sub-components are described in a
separate document, which was written by the team HUT2.

1.4 Overview

Section 2 defines the general product functions, intended application constraints
to be respected and the assumption made in order to define requirements. In
short, it digs further into the product specification, delineating the perspective
of this product, the functions and other general information.

Section 3 lists the specific functional and non-functional requirements in de-
tail.

Appendix A contains detailed information about the system’s interfaces.

Appendix B shows the licence agreement that applies to the final product.

2 Overall description

We present an overall description of the LOGIC sub-component of the Tschau
Sepp Game Component.

2.1 Product perspective

The LOGIC sub-component cannot work on its own but requires both the GUI and
NET sub-components. However, the LOGIC sub-component represents the central
part of the all the three sub-components that make up the entire Tschau Sepp
Game Component.

The LOGIC sub-component does not directly have an interface that connects
two running LOGIC instances. Instead each LOGIC sub-component is connected
to a NET sub-component that is responsible to exchange messages between com-
puters. The LOGIC sub-component, on its own, has two interfaces: one to the
GUI sub-component and another one to the NET sub-component.

4IEEE Std 830-1998: IEEE Recommended Practice for Software Requirements Specifica-
tions

5Distributed and Outsourced Software Engineering course at ETH Zürich

4

2.2 Product functions 2 OVERALL DESCRIPTION

Any detailed definition of the other sub-components is out of scope of this
document.

Figure 1 presents an overall view of the application architecture. With this
we want to present the eight different interfaces provided for the four different
components that form the Tschau Sepp Game Component. This are named
starting with the letter I (standing for interface).

There are no interfaces between the Tschau Sepp Game Component and the
Multiplayer Card Games server.

Figure 1: Exposed Interfaces between Tschau Sepp different components

2.2 Product functions

We present a general overview of all the functions that this sub-component shall
provide. A more detailed explanation of the functionalities is located in section
3.

In general, the functionality of a LOGIC sub-component is

5

2.2 Product functions 2 OVERALL DESCRIPTION

• to store the entire game state;

• to collect players’ actions from both the GUI and NET sub-components;

• to change the game state such that the rules of the game are enfored;

• to provide the GUI sub-component with all the information about the game
state.

More specificially, an instance of the LOGIC sub-component can operate in
either Master or Slave mode. Of all the computers that are connected as a client
to the Multiplayer Card Games server, exactly one has a LOGIC sub-component
instance running that is in Master mode. This computer represents the game
host.

In Master mode the LOGIC sub-component’s functionality is to

• store the binding version of the entire game state;

• receive the actions of all players, using both the GUI and NET sub-components;

• validate received player actions, i.e. check if they are conforming to the
rules of the game;

• change its game state according to all the valid player actions;

• send the changed game state to all the other LOGIC sub-components, which
are in Slave mode, using the NET sub-component;

• provide the GUI sub-component with all the information about the game
state.

In Slave mode the LOGIC sub-component’s functionality is to

• store a copy of the entire game state;

• receive only the actions of the player that is associated with the LOGIC
sub-component, using the GUI sub-component;

• forward a player action to the LOGIC sub-component that is in Master
mode, using the NET sub-component;

• replace the game state if an updated version is received from the LOGIC
sub-component that is in Master mode;

• provide the GUI sub-component with all the information about the game
state.

If a player quits the game or his/her computer gets disconnected from other
reasons, the game will still go on, as long as the player was not sitting on
computer with the system in Master mode.
The following features will not be part of the LOGIC sub-component:

6

2.3 User characteristics 2 OVERALL DESCRIPTION

1. State or game recovery.
The system will not support any kind of state or game recovery, in case
of network failure. For example, if a computer that runs the system in
Slave mode gets disconnected, it will not be able to join the running game
again.

2. Dynamic Master mode re-assignment.
If the computer that is running the system in Master mode is disconnected,
the entire game will immediately stop. The role of the Master will not be
handed over to another system.

2.3 User characteristics

We have not detected any kind of possible User for the LOGIC sub-component.
Human beings do not have a direct interaction with the system.

However, there are conceptually different states in which a player can be in.
These states are:

1. Active player state. A player that is still playing and whose turn it is.
He/she has an undefined place number yet.

2. Non-active player state. A player that is still playing and whose turn
it is not. He/she has an undefined place number yet.

3. Observing player state. A player that got rid of all his/her cards.
He/she already has a defined place number.

Futhermore, a player can be in one of the following states:

1. Game hosting player state. A player that is associated with a LOGIC
sub-component that is in Master mode. If he/she quits the game, the
entire game will stop.

2. Non-game hosting state. A player that is associated with a LOGIC
sub-component that is in Slave mode. If he/she quits the game, the entire
game will go on.

Confer section 3.1.4 for more information on the player’s possible actions.

2.4 Constraints

This document does not represent an SRS of the whole Tschau Sepp Game Com-
ponent. It is intended to provide a concrete SRS for the LOGIC sub-component
without taking into consideration the other sub-components that are required
to run the game. This we have detected to be a constraint since it can produce
ambiguities between requirements of the other components. Other constraints
are related to the lack of constant communication at the time of writing the

7

2.5 Assumptions and dependencies 2 OVERALL DESCRIPTION

separated SRS documents and possible different SRS standards used for pro-
ducing the mentioned document. The rest of the SRS is provided in a separate
document containing the SRS for the NET and GUI sub-components. All the
previously described constraints can have an economically and developing time
impact on the project. The reason is that developers will have to deal with
ambiguities, different standards and to highlight two different documents that
do not represent a complete SRS of the project.

2.5 Assumptions and dependencies

The assumptions in this document are related to the two different teams pro-
ducing them. It is assume that both teams are using the same standard, both
teams are following the guidelines produce and written in the Tschau Sepp Com-
ponent Scope Document. This also establish a dependency between both teams
for producing correct documentation.
Assumptions regarding a running game are:

• There is a stable connection between computers.

• There are not message corruption or errors.

• The LOGIC sub-component in Master mode player keeps a constant and
correct state of the game.

8

3 SPECIFIC REQUIREMENTS

3 Specific requirements

In the following, the LOGIC sub-component is referred to as the system.

Property Description
Requirement ID Defines a unique symbolic name for the requirement. It

also reflects which functional group it belongs to.
Title A descriptive title for the requirement.

Priority Defines the order in which requirements should be imple-
mented. Priorities are designated (highest to lowest) 1, 2,
and 3 ... Requirements of priority 1 are mandatory for
the First Implementation; requirements of priority 2 are
mandatory for the Final Implementation. A priority greater
or equal than 3 represents optional features.

Risk Specifies the risk of not implementing the requirement. It
shows how critical the requirement is to the system as a
whole. The following risk levels are defined over the impact
of not being implemented correctly.

• Critical (C) It will break the main functionality of
the system. The system cannot be used if this re-
quirement is not implemented.

• High (H) It will impact the main functionality of the
system. Some function of the system could be inac-
cessible, but the system can be generally used.

• Medium (M) It will impact some system features, but
not the main functionality. The system can still be
used with some limitation.

• Low (L) The system can be used without limitation,
but with some workarounds.

References Lists the IDs of requirement that are also relevant in this
context.

9

3.1 Functional 3 SPECIFIC REQUIREMENTS

3.1 Functional

3.1.1 General

Req. ID R 3.1.1.001
Title One system per player

Description The system shall be associated with exactly one specific player.
Priority 1

Risk C
References NONE

Req. ID R 3.1.1.002
Title The game state

Description The system shall store a complete Tschau Sepp game state, which
includes the following:

• An ordered list of the participating players;

• The content of the drawing stack;

• The content of the playing stack;

• All players’ cards;

• All players’ current place number;

• The current suit to be played;

• The current sense of rotation;

• The currently active player;

• If the player has already played a card on his/her turn;

• How many cards the currently active player has to draw due
to a previous played 7;

• If the player has just said ”Tschau” or ”Sepp”.

Priority 1
Risk C

References NONE

Req. ID R 3.1.1.003
Title GUI sub-component interface

Description The system shall provide all the information that constitute the
game state to the GUI sub-component.

Priority 1
Risk C

References NONE

10

3.1 Functional 3 SPECIFIC REQUIREMENTS

Req. ID R 3.1.1.004
Title Network communication

Description The system shall be collaborating with other instances of the same
system.

Priority 1
Risk C

References R 3.1.1.001

Req. ID R 3.1.1.005
Title System states

Description The system shall either be in Master or Slave mode.
Priority 1

Risk C
References NONE

Req. ID R 3.1.1.006
Title One master per game

Description In a set of collaborate systems, exactly one shall be in Master
mode, which makes the computer it is running on the game host.

Priority 1
Risk C

References R 3.1.1.005

Req. ID R 3.1.1.007
Title Quitting

Description If a player that is associated with a system in Slave mode quits
the game, he/she shall be removed from the list of players and the
system he/she is associated with shall be disconnected from the
system in Master mode.

Priority 2
Risk H

References R 3.1.1.005

3.1.2 Master mode

Req. ID R 3.1.2.001
Title Receive player actions

Description If in Master mode, the system shall receive the actions of all
participating players.

Priority 1
Risk C

References R 3.1.2.002, R 3.1.2.003

11

3.1 Functional 3 SPECIFIC REQUIREMENTS

Req. ID R 3.1.2.002
Title Receive associated player’s actions

Description If in Master mode, the actions of the associated player shall be
received directly from the GUI sub-component.

Priority 1
Risk C

References NONE

Req. ID R 3.1.2.003
Title Receive other players’ actions

Description If in Master mode, the actions of the other players shall be received
indirectly from NET sub-component.

Priority 1
Risk C

References R 3.1.3.001

Req. ID R 3.1.2.004
Title Validate players actions

Description If in Master mode, the system shall validate any player action that
has been received, in order to enforce the rules of the game.

Priority 2
Risk H

References R 3.1.5.001 - R 3.1.5.012

Req. ID R 3.1.2.005
Title Update game state

Description If in Master mode, the system shall change the game state if a
received player action has been successfully validated, as to reflect
what the action entails.

Priority 1
Risk C

References R 3.1.1.002, R 3.1.2.004

Req. ID R 3.1.2.006
Title Distribute game state

Description If in Master mode, when the game state has been changed, the sys-
tem shall inform all connected systems, which are in Slave mode,
about the new game state, and thereby confirm that the action
was valid.

Priority 1
Risk C

References R 3.1.1.004, R 3.1.3.005

12

3.1 Functional 3 SPECIFIC REQUIREMENTS

Req. ID R 3.1.2.007
Title Invalid actions

Description If in Master mode, when the system receives an invalid action,
it shall inform the system where the action came from about the
fact as well as the reason why the action was invalid.

Priority 2
Risk H

References R 3.1.2.004

Req. ID R 3.1.2.008
Title Game Restart

Description If in Master mode, when all the players in the list of participating
players have a place number defined, the system shall wait for
exactly 10000 milliseconds and set the game state to the initial
one. This requirement is regarded as an alternative to the stopping
criterion described in R 3.1.10.001.

Priority 3
Risk L

References R 3.1.10.001

Req. ID R 3.1.2.009
Title Kicking Players

Description If in Master mode, when the system receives the action kick
(which has a parameter that specifies a player) it shall remove
the player in question from the list of players.

Priority 3
Risk L

References NONE

3.1.3 Slave mode

Req. ID R 3.1.3.001
Title Forward current player actions

Description If in Slave mode, the system shall receive only the actions of the
player associated with it from the GUI sub-component and forward
those actions to the system which is in Master mode through the
NET sub-component.

Priority 1
Risk C

References R 3.1.2.003

Req. ID R 3.1.3.002
Title Validate current player actions

Description If in Slave mode, the system shall only forward actions that it has
validated itself to the system in Master mode.

Priority 3
Risk M

References R 3.1.5.001 - R 3.1.5.012

13

3.1 Functional 3 SPECIFIC REQUIREMENTS

Req. ID R 3.1.3.003
Title Invalid player actions

Description If in Slave mode, when the system receives a message from the
system in Master mode that the last player action was invalid, it
shall store and provide the reason to the GUI sub-component.

Priority 3
Risk M

References R 3.1.2.004, R 3.1.2.007

Req. ID R 3.1.3.004
Title Game state integrity

Description If in Slave mode, the system shall not directly modify its game
state.

Priority 1
Risk C

References R 3.1.3.005

Req. ID R 3.1.3.005
Title Game state updates

Description If in Slave mode, the system shall receive updated game states
from the system in Master mode. These updated game states
shall be an identical clone of the game state maintained on the
Master.

Priority 1
Risk C

References R 3.1.2.006

3.1.4 Initial Game State

Req. ID R 3.1.4.001
Title Cards distribution

Description The initial distribution of cards shall be as follows: all players have
five cards; the playing stack consists of one card; the drawing stack
consists of all the remaining cards. All of the cards are randomly
chosen.

Priority 1
Risk C

References NONE

Req. ID R 3.1.4.002
Title Initial place numbers

Description The place numbers of all the players in the list of participating
players, shall initially have the special value undefined.

Priority 1
Risk C

References NONE

14

3.1 Functional 3 SPECIFIC REQUIREMENTS

Req. ID R 3.1.4.003
Title Initial sense of rotation

Description The initial sense of rotation shall be clockwise unless the initial
card on the playing stack is a 10, in which case it is counter-
clockwise.

Priority 2
Risk H

References R 3.1.4.001

Req. ID R 3.1.4.004
Title Initial suit

Description The initial suit to be played shall be the same as the card on the
playing stack. (Even for a Jack)

Priority 1
Risk C

References R 3.1.4.001

Req. ID R 3.1.4.005
Title Initial draw

Description The initial amount of cards to be drawn due to a 7 is 0, unless
the top card on the playing stack is a 7, in which case the amount
shall be 2.

Priority 2
Risk H

References R 3.1.4.001

Req. ID R 3.1.4.006
Title Initial active player

Description The player that is initially active shall be chosen depending on
the top card on the playing stack as follows: If the card is an 8
the third player on the list shall be active. If the card is a 10 the
last player on the list shall be active. In any other case the second
player on the list shall be active.

Priority 2
Risk H

References NONE

3.1.5 Rules of the game

Req. ID R 3.1.5.001
Title Game card deck.

Description There shall always be exactly 36 cards involved. Each of them
has one of the following four suits: Spades, Diamonds, Clubs or
Hearts, as well as one of the following values: Ace, 6, 7, 8, 9, 10,
Jack, Queen or King.

Priority 1
Risk C

References NONE

15

3.1 Functional 3 SPECIFIC REQUIREMENTS

Req. ID R 3.1.5.002
Title Player possible actions.

Description A player’s action shall be one of the following:

• to draw exactly one card from the drawing stack;

• to put exactly one card from the player’s set of cards on top
of the playing stack;

• to choose a suit;

• to pass;

• to say ”Tschau”;

• to say ”Sepp”;

• to quit the game.

• to kick a player. (optionally)

Priority 1
Risk C

References NONE

Req. ID R 3.1.5.003
Title Action allowance.

Description A player shall only be allowed to perform an action if he/she is
active. The only exception is the action of quitting the game,
which is valid at any time.

Priority 1
Risk C

References R 3.1.5.002

Req. ID R 3.1.5.004
Title Playable card.

Description A player shall be able to put one of his/her cards on the top of
the playing stack if this card has either the same value as the one
on top of the playing stack or the suit matches the current suit
to be played. Furthermore, if the card is a Jack, it can always be
played.

Priority 1
Risk M

References NONE

16

3.1 Functional 3 SPECIFIC REQUIREMENTS

Req. ID R 3.1.5.005
Title Play card by suit type.

Description If the top card of the playing stack is not a Jack, the current suit
to be played shall be the suit of the top card.

Priority 1
Risk H

References R 3.1.5.004

Req. ID R 3.1.5.006
Title Draw card allowance.

Description A player shall be able to draw once a card while he/she is active
if he/she cannot or doesn’t want to play a card yet.

Priority 1
Risk C

References R 3.1.5.008

Req. ID R 3.1.5.007
Title Draw card and Pass.

Description A player shall be able to pass if he/she has already drawn a card
while he/she was active and still cannot or doesn’t want to play
a card.

Priority 2
Risk M

References NONE

Req. ID R 3.1.5.008
Title Active to inactive player state.

Description A player shall be no more active just after having played a card
different from an Ace or a Jack; or after having chosen the suit to
be played; or after having passed.

Priority 1
Risk C

References NONE

Req. ID R 3.1.5.009
Title Next player turn is?

Description If a player is not active anymore, the next active player shall
be chosen from the list of all players as follows: One starts at
the position of the currently active player. If the current sense
of rotation is clockwise, one goes through the list from top to
bottom, otherwise from bottom to top. The list is considered to
be circular. If the top card on the playing stack is not an 8, the
next player that has an undefined place number is chosen. If the
top card is an 8, the second next player that has an undefined
place number is chosen (i.e. one player with undefined place
number is skipped).

Priority 1
Risk C

References R 3.1.5.008

17

3.1 Functional 3 SPECIFIC REQUIREMENTS

Req. ID R 3.1.5.010
Title Play Jack and choose suit.

Description A player shall be obliged to freely chose the current suit to be
played if and only if he/she has just played a Jack. (The actual
suit of the Jack is irrelevant)

Priority 2
Risk M

References NONE

Req. ID R 3.1.5.011
Title Play 10 change rotation.

Description If a player plays a 10, the current sense of rotation shall be changed
between clockwise and counter-clockwise.

Priority 2
Risk M

References NONE

Req. ID R 3.1.5.012
Title Ace on top of stack and draw card.

Description If the top card on the playing stack is an Ace and the active player
cannot play a card on top of it he/she shall be able to draw a new
card.

Priority 2
Risk M

References NONE

3.1.6 Drawing Cards Due to A 7

Req. ID R 3.1.06.001
Title Increment draw card amount.

Description If a player plays a 7, the amount of cards to be drawn due to a 7
shall rise by 2.

Priority 2
Risk M

References NONE

Req. ID R 3.1.06.002
Title Player draw card or play 7.

Description If the amount of cards to be drawn due to a 7 is non-zero, the
player shall be obliged to either draw this amount of cards from
the drawing stack or to play a 7. Drawing cards due to a 7 does
not forfeit the right to draw one more card afterwards.

Priority 2
Risk M

References R 3.1.06.001

18

3.1 Functional 3 SPECIFIC REQUIREMENTS

Req. ID R 3.1.06.003
Title Reset draw card amount

Description If a player has drawn the amount of cards he/she was obliged to,
the amount of cards to be drawn due to a 7 shall be reset to 0.

Priority 2
Risk M

References NONE

3.1.7 Announcements

Req. ID R 3.1.07.001
Title Say Tschau

Description A player shall be obliged to say Tschau before playing his/her
second last card.

Priority 2
Risk H

References NONE

Req. ID R 3.1.07.002
Title Say Sepp

Description A player shall be obliged to say Sepp before playing his/her last
card.

Priority 2
Risk H

References NONE

Req. ID R 3.1.07.003
Title Did Not say Tschau or Sepp?

Description A player shall receive the top card from the drawing stack auto-
matically if he/she has forgotten to say either ”Tschau” or ”Sepp”,
when he/she had to.

Priority 2
Risk H

References R 3.1.07.001, R 3.1.07.002

3.1.8 Place Numbers

Req. ID R 3.1.08.001
Title Assigning number to player

Description A player shall be assigned place number the game if he/she does
not have anymore cards. The place number shall be the lowest
positive integer number that has not already been assigned to any
player.

Priority 1
Risk C

References NONE

19

3.1 Functional 3 SPECIFIC REQUIREMENTS

Req. ID R 3.1.08.002
Title One player numbering check

Description If the list of participating players contains only one player that
has undefined as a place number, this value shall be changed
automatically to the lowest positive integer number that has not
already been assigned to any player.

Priority 1
Risk C

References R 3.1.08.001

3.1.9 Drawing Stack Restocking

Req. ID R 3.1.09.001
Title Player quit restock cards in deck stack

Description If a player that is associated with a system in Slave mode has quit
the game his/her cards shall be added to the drawing stack in a
random fashion.

Priority 2
Risk C

References NONE

Req. ID R 3.1.09.002
Title Re-shuffle deck stack when empty.

Description If the drawing stack consists of only one card, all but the top card
from the playing stack shall be added to the drawing stack in a
random fashion.

Priority 2
Risk C

References NONE

3.1.10 Stopping Criteria

Req. ID R 3.1.10.001
Title Stop condition one.

Description If the list of participating players contains no player that has un-
defined as place number, the system shall stop, as the game is
considered to be finished.

Priority 1
Risk C

References NONE

Req. ID R 3.1.10.002
Title Stop condition two.

Description If the player that is associated with the system in Master mode
quits the game, the system shall stop.

Priority 1
Risk H

References NONE

20

3.2 Non-Functional 3 SPECIFIC REQUIREMENTS

3.2 Non-Functional

Req. ID R 3.2.001
Title Availability

Description The system will be available to the NET and GUI sub-components
as long as the system is running.

Priority 1
Risk C

References NONE

Req. ID R 3.2.002
Title Reliability

Description The system will always work correctly and uncorrupted, given its
input from the GUI and NET sub-components.

Priority 1
Risk C

References NONE

Req. ID R 3.2.003
Title Integrity

Description The system will maintain information integrity; the Slaves may
use an older version of the Game State, but as soon as they receive
an update, they shall act upon it, so that the state is updated at
most 2 minutes after the Master’s Game State was updated.

Priority 1
Risk H

References NONE

Req. ID R 3.2.004
Title Robustness

Description The system shall not recover from error states produced by exter-
nal factors.

Priority 1
Risk L

References NONE

Req. ID R 3.2.005
Title Performance

Description The system shall process a notification from the NET or GUI sub-
components in at most 1000 milliseconds.

Priority 2
Risk L

References NONE

21

3.2 Non-Functional 3 SPECIFIC REQUIREMENTS

Req. ID R 3.2.006
Title Maintainability

Description The system’s source code shall follow these rules:

• Good indentation is required.

• Each variable should be named in a suggestive manner.

• Each name given to a class or a feature has to clearly identify
its meaning and suggest its behavior. Comments should be
present to clarify meanings when names do not suffice.

• The Class names have to be prefixed with TS

Priority 2
Risk L

References NONE

22

A SYSTEM INTERFACES

A System Interfaces

Our system was designed, having in mind a very simple API. The application’s
sub-components communicate mainly using a message driven system. The latter
allows us to have a simple and decoupled application. The three sub-components
are represented by the classes TS NET, TS GUI and TS LOGIC. In order to pass
messages, those classes use dedicated features. TS LOGIC and TS GUI use a
feature called get message. TS NET uses the features broadcast message and
send message to.

On top of that, the main classes have several additional features that are nec-
essary for the communication, but which do not fit into the message passing
paradigm.

In the following, all the features that are relevant for the interface are listed and
described. For every featured the pre- and postcondition is shown. At the end
of the lists, we also present the class invariants.

A.1 The TS LOGIC Class

get message (m: TS MESSAGE)

Require is draw card action (m) or is play card action (m)
or is choose suit action (m) or is pass action (m)
or is say tschau action (m) or is say sepp action
(m) or is quit action (m) or is kick action (m) or
is invalid action notification(m)

Ensure True
Description Receives and analyzes messages sent by the GUI and NET sub-

components.

is master: BOOLEAN

Require True
Ensure True
Description Returns whether or not this system is running under master mode.

add new player (user id: STRING 8; user ip: STRING 8)

Require is master = True
user id /= Void and then not user id.is empty
user ip /= Void and then not user ip.is empty
connected players.count < Maximum player count

Ensure connected players.count = old connected players.count
+ 1

Description Adds a new player to the game.

23

A.2 The TS GUI Class A SYSTEM INTERFACES

connected players: LIST [TS PLAYER]

Require True
Ensure Result /= Void
Description Return a list of all connected players.

disconnect (user id: STRING 8)

Require is master = True
user id /= Void and then not user id.is empty
connected players.count > 0

Ensure connected players.count = old connected players.count
- 1

Description Disconnect a player with ID user id from the game.

associated player: TS PLAYER

Require True
Ensure Result /= Void
Description Returns the player that is associated with this instance

Class Invariant

game is running implies (connected players.count ≥
Minimum player count and connected players.count ≤
Maximum playser count)

A.2 The TS GUI Class

A.2.1 Interact with LOGIC sub-component

get message (m: TS MESSAGE)

Require is draw card action (m) or is play card action (m)
or is choose suit action (m) or is pass action (m)
or is say tschau action (m) or is say sepp action
(m) or is quit action (m) or is kick action (m) or
is invalid action notification(m)

Ensure True
Description Receives and analyzes messages sent by the LOGIC sub-component;

if there is any change in game state, this procedure will call re-
draw stage procedure

A.2.2 User interaction handler

click card (card: TS CARD)

Require is draw card action (m) or is play card action (m)
Ensure True
Description Pass a card-clicking event to LOGIC subcomponents to valid.

24

A.2 The TS GUI Class A SYSTEM INTERFACES

choose suit (suit: TS SUIT)

Require is choose suit action
Ensure True
Description Choose a suit for the next player to play.

say sepp

Require is say sepp action
Ensure True
Description Say sepp button handler.

say tschau

Require is say tschau action
Ensure True
Description Say tschau button handler.

kick player (slave player: TS PLAYER)

Require associated player.is master, is kick action
Ensure connected players.count = old connected players.count-

1
Description Kick player button handler, this button is visible only in master

mode.

quit game

Require is quit action
Ensure True
Description Quit button handler.

pass

Require is pass action
Ensure True
Description Pass button handler.

A.2.3 Change the visualization

init game stage

Require – is the first procedure to be called
Ensure True
Description Initilize the game stage.

redraw stage

Require is invalid action notification = FALSE
Ensure True
Description Redraw the game visualiztion (cards, player list) after a valid no-

tification is passed to TS GUI from TS LOGIC or when there is
a change in player list.

25

A.2 The TS GUI Class A SYSTEM INTERFACES

show current rotation

Require –
Ensure is rotate action
Description Show the current sense of rotation.

show kick button

Require –
Ensure associated player.is master
Description Show the kick button for master player.

set current effect card(card: TS CARD)

Require –
Ensure is draw card action
Description Show the current effect card.

play card(played card: TS CARD)

Require –
Ensure is play card action
Description Move the card from player’s hand to the playing stack, and redraw

stage.

draw card(drawed card: TS CARD)

Require –
Ensure is draw card action
Description Move the card from drawing stack to player’s hand , and redraw

stage.

notify sepp

Require –
Ensure is say sepp action
Description Notify when a player says sepp .

notify tschau

Require –
Ensure is say tschau action
Description Notify when a player says tschau .

A.2.4 Attribute

list card: LIST[TS CARD]

Require –
Ensure number of card = 36
Description List of card .

connected players: LIST[TS PLAYER]

Require –
Ensure Result /= Void
Description List of player .

26

A.3 The TS NET Class A SYSTEM INTERFACES

pass: BUTTON

Require –
Ensure –
Description Pass button .

quit: BUTTON

Require –
Ensure –
Description Quit button .

quit: BUTTON

Require –
Ensure –
Description Kick button .

associated user: TS PLAYER

Require TRUE
Ensure Result /= Void
Description Returns the player that is associated with this instance.

A.3 The TS NET Class

is master: BOOLEAN

Require TRUE
Ensure Result /= Void
Description TRUE if this is a master player and FALSE if not .

port: INTEGER

Require TRUE
Ensure port ≥ 1029 and port ≤ 65535
Description A number indicate the port to communicate between program

instances.

associated user: TS PLAYER

Require TRUE
Ensure Result /= Void
Description Returns the player that is associated with this instance.

listener: NETWORD DIAGRAM SOCKET

Require TRUE
Ensure Result /= Void
Description Returns the listener.

broadcast message: TS MESSAGE

Require TRUE
Ensure Result /= Void
Description Send the message to all slave players.

27

A.3 The TS NET Class A SYSTEM INTERFACES

start server

Require is master
Ensure –
Description Start server.

stop server

Require is master
Ensure –
Description Stop server.

disconnect user(user: TS USER)

Require is master
Ensure –
Description Disconnect an user (kick or no more network activity).

invite(user: TS USER)

Require is master
Ensure –
Description Invite a player.

connect to(server ip: STRING, message: TS MESSAGE)

Require –
Ensure –
Description Connect to a server.

disconnect(server ip: STRING, message: TS MESSAGE)

Require –
Ensure –
Description Disconnect and quit game.

send message to(player: TS PLAYER,message: TS MESSAGE)

Require –
Ensure –
Description Send messages to server about the action update, chat, etc; and

server will response.

28

A.4 Message Passing Diagram A SYSTEM INTERFACES

A.4 Message Passing Diagram

In the following diagram, a player that is asscociated with a system in Slave
mode decides to draw a card from the drawing stack. It is shown how the
messages will be passed between the different sub-component instances.

Figure 2: Ordered message flow picture.

29

B LICENSE AGREEMENT

B License Agreement

Copyright c©2009 ETH (Swiss Federal Institute of Technology), Computer Sci-
ence department. All rights reserved. Tschau Sepp Game Component. Permis-
sion to use, copy, modify, and distribute this software and its documentation
for any purpose, without fee, and without written agreement is hereby granted,
provided that the above copyright notice and the following two paragraphs ap-
pear in all copies of this software.

IN NO EVENT SHALL THE SWISS FEDERAL INSTITUTE OF TECH-
NOLOGY, COMPUTER ENGINEERING AND NETWORKS LABORATORY
BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCI-
DENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE SWISS
FEDERAL INSTITUTE OF TECHNOLOGY, COMPUTER ENGINEERING
AND NETWORKS LABORATORY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE.

THE SWISS FEDERAL INSTITUTE OF TECHNOLOGY, COMPUTER
ENGINEERING AND NETWORKS LABORATORY, SPECIFICALLY DIS-
CLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER
IS ON AN ”AS IS” BASIS, AND THE SWISS FEDERAL INSTITUTE OF
TECHNOLOGY, COMPUTER ENGINEERING AND NETWORKS LABO-
RATORY HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUP-
PORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

30

