
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

Assignment 2: Give me your feature name and I’ll call you

ETH Zurich

Hand-out: Friday, 23 September 2011
Due: Tuesday, 4 October 2011

Real Programmers c© Randall Munroe (xkcd.com)

Goals

• Write more feature calls.

• Write your first standalone program.

• Get used to EiffelStudio (editor, navigation and debugger).

• Learn to distinguish between queries and commands.

• Learn what makes up a valid feature call.

1 Zurich needs more stations

In this task you will continue exploring Traffic and write more feature calls, with and without
arguments.

1

http://xkcd.com/378


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

To do

1. Download http://se.inf.ethz.ch/courses/2011b fall/eprog/assignments/02/traffic.zip and
unzip it to a folder of your choice. Open assignment 2.ecf in EiffelStudio and look
at the class PREVIEW again: you will see that the feature explore is now empty. If you
run the program, you will see the map of Zurich and nothing else going on (nothing is
highlighted or animated). In this task you will add feature call instructions to explore
(between do and end) and check how they affect the map.

2. Let us add a new station to one of the tram lines in Zurich. To achieve that you will
have to call a feature on the predefined object zurich. Try to find out which feature it is:
type zurich followed by a dot, and go through the pop-up list until you see something that
fits. Note that this feature requires some arguments: you have to provide Traffic with the
name for the new station as well as its x and y coordinates. The name can be any text
string you like in double quotes, for example ”Zoo”. The coordinates are measured in
meters starting from the city center. For example, x = 1800 and y = −500 would denote
a location 1800 meters to the east and 500 meters to the south from the city center.

3. To add the new station to one of the existing tram lines invoke the feature connect station
on zurich, giving it as arguments the line number and the name of the station.

4. If you run the program now, you won’t see any changes on the map. This is because in
Traffic we distinguish two kinds of objects: the model of the city (in our case zurich) and
its visual representation, the view (in our case called zurich map). Whenever you change
the model, you have to let the view know that it has to update itself accordingly. Add a
call to zurich map.update and you will see that the new station now appears on the map.
If you would like the map to zoom automatically so that the new station fits on the screen,
add a call to zurich map.fit to window.

5. Now let us attract some attention to the new station and make it blink. You can achieve
that by highlighting and unhighlighting the view of the station several times in a row. To
access the station view use the expression zurich map.station views.item (...), providing
the station name as an argument. To make the blinking visible, call the feature wait after
each highlight and unhighlight instruction, giving as an argument the number of seconds
you want to wait. Notice that wait is not invoked as the other features, by using an object
name and then a dot, but just as it is (it is an unqualified call [Touch Of Class, page 134]).

6. Let us find out where the feature wait comes from. As it appears in an unqualified call, it
must be defined either in the same class or in an ancestor class. An ancestor class for a
class C is a class that C inherits from. You may have noticed the inherit ZURICH MAP
clause after class PREVIEW. It means that PREVIEW can use all the features defined
in ZURICH MAP.

In PREVIEW there is no wait, so let us check ZURICH MAP. Right-click on the label
ZURICH MAP and choose the option “Retarget to class ZURICH MAP”. You can also
type “zurich map” in the drop down box on the top left (labeled “Class”).

Let us now check the features of class ZURICH MAP. On the bottom of the right panel
select the tab labeled “Features”. You should now see a list of all the features defined in
class ZURICH MAP, including wait.

Hint There are two shorter ways to find wait. While in class PREVIEW, type “wait” in
the drop down box labeled “Feature” above the editor window. Alternatively, right-click
on wait in the program text and then select “Retarget to Feature wait”. This will bring
up the desired feature in class ZURICH MAP.

2

http://se.inf.ethz.ch/courses/2011b_fall/eprog/assignments/02/traffic.zip


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

Hint To check the list of all available features, press “Ctrl + Space” while in the editor
window. To check the list of available features, whose names start with a certain prefix,
type this prefix and then press “Ctrl + Space” (see Figure 1).

Figure 1: EiffelStudio’s auto-completion feature

To hand in

Hand in the code of feature explore.

2 Introducing yourself

In this task you will write your first standalone program (not based on Traffic). The program
will introduce yourself to your assistant.

To do

1. Download http://se.inf.ethz.ch/courses/2011b fall/eprog/assignments/02/introduction.zip
and unzip it to a directory of your choice.

Open “introduction.ecf” in EiffelStudio. In the “Groups” tool on the right you can see
that the whole project consists of a single class APPLICATION. Open this class in the
editor. You will see that it has a single feature, execute, whose body is empty so far.

2. Modify the feature execute so that it prints the following text (replace the information
about John Smith with your personal data):

Name: John Smith

Age: 20

Mother tongue: English

Has a cat: True

You can also add any other information you like.

To do the printing you will use the predefined object called Io (input-output). The features
you can call on Io are defined in the class STD FILES. Browse this class to find the features
you need. In particular pay attention to:

3

http://se.inf.ethz.ch/courses/2011b_fall/eprog/assignments/02/introduction.zip


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

Figure 2: Setting a breakpoint

• feature put string that takes a text string (e.g. ”Hello, world!”) as an argument
and prints it;

• feature put integer that takes an integer number (e.g. 5) as an argument and prints
it;

• feature put boolean that takes a boolean value (True or False) as an argument and
prints it;

• feature new line that moves to the next line.

Compile and run your program. Hint: the console window with the program output does
not automatically pop out on all platforms. If your program appears to be doing nothing,
look for a minimized window. On Linux and Mac always start EiffelStudio from a console;
then the output will be printed to the same console.

3. Until now you have compiled and executed a program without having the possibility to
check what happened after every single instruction was executed. Now let us see how to use
EiffelStudio in debug mode [Touch Of Class, page 170]. Being in debug mode means being
able to observe the application execution instruction by instruction, therefore increasing
the chances to discover errors (“bugs”).

Right-click on the feature name execute in the program text and choose “Pick feature
execute”. Now right-click in the context tool (the area below the editor). The code of
execute should now appear in the context tool, with gray circles on the left (see an example
in Figure 2). These circles identify instructions that will be executed. Click on the first

4



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

gray circle; it should become red. You have just set a breakpoint, at which the program
will pause execution.

Now click the “Run” button (see Figure 3) or press “F5”: the program will start, but
almost immediately it will pause its execution at your breakpoint. Now you can observe
the program behavior step by step by clicking the “Step” button (or pressing “F10”). To
resume the normal execution click on the “Run” button again (or press “F5”).

Figure 3: “Run” and “Step” buttons

To hand in

Hand in the code of feature execute.

3 Command or Query?

To do

Features listed below can be found in class CITY. We want to find out which features are
commands and which features are queries [Touch Of Class, page 29]. Let us have a look at the
feature definition. If it appears in the form:

feature name: CLASS NAME or feature name (...): CLASS NAME,

then it is a query. If it appears in the form:

feature name or feature name (...),

then it is a command.
Now for each of the following features in CITY, figure out whether it is a command or a

query:

1. Feature name, as in zurich.name.

2. Feature add line, as in zurich.add line (2, ”tram”).

3. Feature stations, as in zurich.stations.

4. Feature connecting lines, as in zurich.connecting lines (central, polyterrasse).

5. Feature move all, as in zurich.move all (0.5).

6. Feature west, as in zurich.west.

To hand in

Hand in your answers.

5


	Zurich needs more stations
	Introducing yourself
	Command or Query?

