
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

Assignment 9: Data structures

ETH Zurich

Hand-out: 18. November 2011
Due: 29. November 2011

Travelling Salesman Problem c© Randall Munroe (http://xkcd.com/399/)

Goals

• Figure out when to use which data structure.

• Practice using data structures.

• Practice implementing your own data structures.

1 Choosing data structures

In the lecture you have learnt that different data structures can represent different kinds of
information and support efficient implementation of different operations.

To do

For each of the use cases below pick a data structure (from the ones you have seen in the lecture)
that is best suited for that use case, and explain your choice. If you think there is more than
one suitable data structure, briefly discuss the trade-offs.

Example. You want to store the names of weekdays and access them by the number of a day
within the week.

Answer. An array, because the number of weekdays is fixed, and access by index has to be
efficient.

1

http://xkcd.com/399/


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

1. You want to store the stations of a public transportation line. New stations can be added
to both ends of the line, but not between existing stations. You should be able to traverse
the line in both directions.

2. You want to store a phone book, which supports looking up a phone number by name, as
well as adding and removing entries.

3. You are looking for a way out of a maze (like in the previous assignment), but you are
not allowed to use recursion. You have to store the path you are currently exploring, and
be able to go back one step whenever you find yourself in a dead-end and explore a new
possibility from there.

4. You want to store a sorted list of strings and support the operation of merging two sorted
lists into one, in place (without creating a copy of the lists).

5. You are writing software for a call center. When a client calls, his call should be stored
until there is a free operator to pick it up. Calls should be processed in the same order
they are received.

To hand in

Hand in your answers for questions 1–5.

2 Short trips: take two

In the previous assignment you had to implement a feature that highlights all the stations that
are reachable from a given station in two minutes or less. If your implementation is similar
to the master solution, then it doesn’t keep track of the stations it already visited and keeps
visiting the same stations again and again. As a result, highlighting the short-trip range for
stations with a lot of connections (for example, Bürkliplatz) takes a long time.

Note that it is incorrect to simply stop the search when the next station is already highlighted,
because the route to that station you found the first time around could be longer than the one
you are building this time, and thus you can miss some reachable stations.

In this task you have to find a way to make highlight short distance more efficient by keeping
track of the state of traversal using an appropriate data structure.

To do

1. You can start either from your own solution to “Short trips” from the previous as-
signment or from the master solution: http://se.inf.ethz.ch/courses/2011b_fall/eprog/

assignments/09/traffic.zip.

2. What kind of information do you have to keep track of, so that the traversal does not
miss reachable stations, but also does not visit the same station unnecessary many times?
Choose an appropriate data structure class from the EiffelBase2 library (see Table 1) to
store this kind of information, and introduce an attribute of the corresponding type into
SHORT TRIPS. Modify your implementation of highlight reachable to make use of the
introduced data structure.

3. Compare the performance of highlight short distance before and after the modification
(the difference is especially clear if you change the initial time interval from two to three
minutes).

2

http://se.inf.ethz.ch/courses/2011b_fall/eprog/assignments/09/traffic.zip
http://se.inf.ethz.ch/courses/2011b_fall/eprog/assignments/09/traffic.zip


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

Data structure Concrete implementations Description

V ARRAY V ARRAY Arrays: elements are indexed with integers
from a continuous interval

V LIST V ARRAYED LIST,
V LINKED LISTS

Lists: elements can be inserted and removed
at any position

V TABLE V HASH TABLE,
V SORTED TABLE

Tables: values are indexed by keys; key-value
pairs can be updated, added and removed

V SET V HASH SET,
V SORTED SET

Sets: elements are unique and lookup is effi-
cient

V STACK V LINKED STACK Stacks: last in first out policy
V QUEUE V LINKED QUEUE Queues: first in first out policy

Table 1: Data structure classes in EiffelBase2

To hand in

Hand in the code of SHORT TRIPS.

3 English to Swiss-German Dictionary

The ETH administration is unhappy that many professors and teaching assistants do not speak
Swiss-German. They asked you to design an English to Swiss-German dictionary application to
help the teaching staff learn the language.

You decided to store the dictionary in a data structure called trie (or prefix tree). A trie is
a special kind of a tree that is used to store maps of keys to values where the keys are usually
strings. In your case English words are the keys and Swiss-German words are the values.

In a trie edges are labeled with characters in such a way that every path from the root to a
node corresponds to a prefix of some key. If such path constitutes a whole key the node it leads
to stores the corresponding value; otherwise the node is empty. See figure 1 for an example.

To make lookup in the dictionary even more efficient you decided that the children of each
node should be sorted according to the character labels on the edges. For example, in figure 1
the children of the root node are stored in order ‘h’, ‘i’, ‘t’.

To do

1. Download http://se.inf.ethz.ch/courses/2011b_fall/eprog/assignments/09/dictionary.

zip unzip it and open dictionary.ecf.

2. Class TRIE contains a skeleton of the trie node data structure. A trie node stores a linked
list of edges, where each edge is associated with a label, the child node it is connected to
and the next edge in the list. For example, the root node of the trie in figure 1 will store
a reference to its first edge (labeled with ‘h’), which in turn stores the reference to the
‘i’ edge, and that one — to the ‘t’ edge. Remember that the edges in the list have to be
sorted according to their labels.

The feature item(k: STRING): STRING that looks up a key in the trie is already imple-
mented. You can use this implementation as an example of traversing the trie.

Your task is to implement two features:

• insert (k, v: STRING) should insert a key-value pair (k, v) into the trie; if the key k
already existed the corresponding value should be replaced with v.

3

http://se.inf.ethz.ch/courses/2011b_fall/eprog/assignments/09/dictionary.zip
http://se.inf.ethz.ch/courses/2011b_fall/eprog/assignments/09/dictionary.zip


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

Figure 1: A trie storing translations of English words “hi”, “i”, “in”, “tea”, “ten”, “to”.

• to string: STRING should return a printable representation of the trie with keys
sorted lexicographically (see figure 2 for an example.) Hint: For the recur-
sive implementation of to string it is convenient to introduce an auxiliary func-
tion to string with prefix (key prefix: STRING): STRING, whose argument denotes
the prefix that has to be prepended to every key.

3. Feature execute of class APPLICATION tests the implementation of TRIE. After you are
finished with the three features from the previous task, the application should run without
contract violations and produce the same output as in figure 21.

hi - hoi
i - ich
in - in
tea - Tee
ten - zäh
to - zu

Figure 2: String representation of the trie in figure 1.

To hand in

Hand in the code of TRIE.

1With the only difference that the symbol ‘ä’ is printed as ‘ae’.

4


	Choosing data structures
	Short trips: take two
	English to Swiss-German Dictionary

