
1

Advanced Material

The following slides contain advanced
material and are optional.

2

Outline

 Constants and global variables

 Constants in OO programming

 Once routines

 Definition

 Use

 Sharing objects

 Arguments and contracts

3

Constants and global variables

Constants for basic types are easy

class CONSTANTS
 Pi: Real = 3.1415926524
 Ok: Boolean = True
 Message: STRING = “abc”
end

class APPLICATION

inherit CONSTANTS

feature
 foo do print (Pi) end
end

4

Constants in OO programs

What about user defined types?

class CONSTANTS
 i: COMPLEX = ???
 Hans: PERSON = ???
 Zurich: MAP = ???
end

In other languages

 Static variables

 Singleton pattern

In Eiffel

 Once routines

5

What are once routines?

Executed the first time

Result is stored

In further calls, stored result is returned

 foo: INTEGER
 once
 Result := factorial (10)
 end

 test_foo
 do
 io.put_integer (foo) -- 3628800, calculated
 io.put_integer (foo) -- 3628800, directly returned
 end

6

Once for whom?

Computation is once per class hierarchy
 Result is shared among all objects of a class

and its subclasses

Once routines can take a special flag
This flag is used to indicate that execution is e.g. one of

 Once per object
 Once per thread (default)
 Once per system

 once_per_object once_per_thread
 once (“OBJECT”) once (“THREAD”)
 … …
 end end

 once_per_object also_once_per_thread
 once (“GLOBAL”) once
 … …
 end end

7

Use of once routines

Constants, other than basic types
 i: COMPLEX
 once create Result.make (0, 1) end

Lazy initialization
 settings: SETTINGS
 once create Result.load_from_filesystem end

Initialization procedures
 init_graphics_system
 once ... end

Sharing of objects (see next)

8

Sharing objects I

You can share objects

Can be used to achieve effect of global/static variables

How?

 Once routine returning a reference

 Will always return the same reference

 Create a SHARED_X class and inherit from it

9

Sharing objects II

class SHARED_X
 the_one_and_only_x: attached X
 once
 create Result.make
 end
end

class X
create {SHARED_X}
 make
feature {NONE}
 make
 do
 end
end

10

Sharing objects III

class USER1_OF_X inherit SHARED_X
feature
 foo
 do
 the_one_and_only_x.do_something
 end
end

class USER2_OF_X inherit SHARED_X
feature
 bar
 do
 the_one_and_only_x.do_something
 end
end

11

Pitfalls of once and constants

No guarantee that only one instance will be created

 Inheriting classes can also call creation routine

Problems can arise when once references are shared with
 external C code due to the garbage collector

Strings are not expanded!

 message: STRING = “abc”
 foo
 do
 message.append (“def”)
 -- from now, “message” will be “abcdef”
 end

12

Arguments and contracts

 foo (i: INTEGER): INTEGER
 require
 i > 0
 once
 Result := i * 2
 ensure
 Result = i * 2
 end

What is the output of the following code block

 do
 io.put_integer (foo (2))
 io.put_integer (foo (3))
 io.put_integer (foo (-2))
 end

 Don„t write once functions taking arguments.

Don„t write complex postconditions in once funcions.

-- 4
-- postcondition violation
-- precondition violation

13

A peek at the Eiffel ECMA specification

8.23.26 – Semantics: General Call Semantics
The effect of an Object_call of feature sf is, in the absence of any exception, the
effect of the following sequence of steps:
1. Determine the target object O through the applicable definition.
2. Attach Current to O.
3. Determine the dynamic feature df of the call through the applicable

definition.
4. For every actual argument a, if any, in the order listed: obtain the value v of

a; then if the type of a converts to the type of the corresponding formal in
sf, replace v by the result of the applicable conversion. Let arg_values be the
resulting sequence of all such v.

5. Attach every formal argument of df to the corresponding element of
arg_values by applying the Reattachment Semantics rule.

6. If the call is qualified and class invariant monitoring is on, evaluate
the class invariant of O’s base type on O.

7. If precondition monitoring is on, evaluate the precondition of df .
8. If df is not an attribute, not a once routine and not external, apply Non-Once

Routine Execution Semantics to O and df .
9. If df is a once routine, apply the Once Routine Execution Semantics

to O and df.
10. If df is an external routine, execute that routine on the actual arguments

given, if any, according to the rules of the language in which it is written.
11. If the call is qualified and class invariant monitoring is on, evaluate

the class invariant of O’s base type on O.
12. If postcondition monitoring is on, evaluate the postcondition of df.

