
1

Advanced Material

The following slides contain advanced
material and are optional.

2

Outline

 Void-safety

 Problem of void-calls

 A solution to void-calls

 Attached types

 Certified attachment patterns

 Object test

 Void-safety in other languages

For detailed information, see
“Avoid a Void: The eradication of null dereferencing”
http://s.eiffel.com/void_safety_paper

http://s.eiffel.com/void_safety_paper

3

From the inventor of null references

I call it my billion-dollar mistake. It was the invention of
the null reference in 1965. At that time, I was designing
the first comprehensive type system for references in an
object oriented language (ALGOL W). My goal was to
ensure that all use of references should be absolutely
safe, with checking performed automatically by the
compiler. But I couldn't resist the temptation to put in a
null reference, simply because it was so easy to implement.
This has led to innumerable errors, vulnerabilities, and
system crashes, which have probably caused a billion
dollars of pain and damage in the last forty years.

 By Tony Hoare, 2009

4

Problem of void-calls

Entities are either

 Attached: referencing an object

 Detached: void

Calls on detached entities produce a runtime error

Runtime errors are bad...

How can we prevent this problem?

5

Solution to void-calls

Statically attached: checked at compile time

Dynamically attached: attached at runtime

Consistency:

A call f.x (...) is only allowed, if f is
statically attached.

If f is statically attached, its possible
runtime values are dynamically attached.

6

Statically attached entities

Attached types

 Types which cannot be void

 x: attached STRING

Certified attachment patterns (CAP)

 Code pattern where attachment is guaranteed

 if x /= Void then x.f end (where x is a local)

Object test

 Assign result of arbitrary expression to a local

 Boolean value indicating if result is attached

 if attached x as l then l.f end

7

Attached types

Can declare type of entities as attached or detachable
 att: attached STRING
 det: detachable STRING

Attached types

 Can call features: att.to_upper
 Can be assign to detachable: det := att
 Cannot be set to void: att := Void

Detachable types

 No feature calls: det.to_upper
 Cannot be assign to attached: att := det
 Can be set to void: det := Void

8

Attached types (cont.)

Entities need to be initialized

 Detachable: void

 Attached: assignment or creation

Initialization rules for attached types

 Locals: before first use

 Attributes: at end of each creation routine

 Compiler uses simple control-flow analysis

Types without attachment mark

 Currently defaults to detachable

 In future will be switched to attached

9

Attached types demo

EiffelStudio settings

Declaration

Error messages

10

Certified attachment pattern (CAP)

Code patterns where attachment is guaranteed

Basic CAP for locals and arguments

 Void check in conditional or semi-strict operator

 Setter or creation

 capitalize (a_string: detachable STRING)
 do
 if a_string /= Void then
 a_string.to_upper
 end
 ensure
 a_string /= Void implies a_string.is_upper
 end

11

CAP demo

Different CAPs for locals and arguments

 Void check in contract

 Void check in conditional

 Setter

 Creator

12

Object test

Checking attachment of an expression (and its type)

Assignment to a local

 Local is not declared and only available in one branch

 name: detachable STRING

 capitalize_name
 do
 if attached name as l_name then
 l_name.to_upper
 end
 ensure
 attached name as n and then n.is_upper
 end

13

Object test demo

Object test in body

Object test in assertion

Object test to test for type

14

Stable attributes

Detachaed attributes which are never set to void

They are initially void, but once attached will stay so

The basic CAPs work for them as well

 stable name: detachable STRING

 capitalize_name
 do
 if name /= Void then
 name.to_upper
 end
 end

15

Stable demo

Feature annotations

CAP with stable attributes

Assigning to stable attributes

16

Void-safety in other languages: Spec#

Research variant of C#

Adds contracts and non-null types (and more)

Non-null types are marked with !

 String s = null;

 String! s = „abc“;

 String! s = null;

17

Void-safety in other languages: JML

Research variant of Java

Adds contracts and non-null types (and more)

Types (except locals) are non-null per default

 String s = null;

 String s = „abc“;

 /*@ nullable @*/ String s = null;

