
1

Advanced Material

The following slides contain advanced
material and are optional.

2

Outline

 Void-safety

 Problem of void-calls

 A solution to void-calls

 Attached types

 Certified attachment patterns

 Object test

 Void-safety in other languages

For detailed information, see
“Avoid a Void: The eradication of null dereferencing”
http://s.eiffel.com/void_safety_paper

http://s.eiffel.com/void_safety_paper

3

From the inventor of null references

I call it my billion-dollar mistake. It was the invention of
the null reference in 1965. At that time, I was designing
the first comprehensive type system for references in an
object oriented language (ALGOL W). My goal was to
ensure that all use of references should be absolutely
safe, with checking performed automatically by the
compiler. But I couldn't resist the temptation to put in a
null reference, simply because it was so easy to implement.
This has led to innumerable errors, vulnerabilities, and
system crashes, which have probably caused a billion
dollars of pain and damage in the last forty years.

 By Tony Hoare, 2009

4

Problem of void-calls

Entities are either

 Attached: referencing an object

 Detached: void

Calls on detached entities produce a runtime error

Runtime errors are bad...

How can we prevent this problem?

5

Solution to void-calls

Statically attached: checked at compile time

Dynamically attached: attached at runtime

Consistency:

A call f.x (...) is only allowed, if f is
statically attached.

If f is statically attached, its possible
runtime values are dynamically attached.

6

Statically attached entities

Attached types

 Types which cannot be void

 x: attached STRING

Certified attachment patterns (CAP)

 Code pattern where attachment is guaranteed

 if x /= Void then x.f end (where x is a local)

Object test

 Assign result of arbitrary expression to a local

 Boolean value indicating if result is attached

 if attached x as l then l.f end

7

Attached types

Can declare type of entities as attached or detachable
 att: attached STRING
 det: detachable STRING

Attached types

 Can call features: att.to_upper
 Can be assign to detachable: det := att
 Cannot be set to void: att := Void

Detachable types

 No feature calls: det.to_upper
 Cannot be assign to attached: att := det
 Can be set to void: det := Void

8

Attached types (cont.)

Entities need to be initialized

 Detachable: void

 Attached: assignment or creation

Initialization rules for attached types

 Locals: before first use

 Attributes: at end of each creation routine

 Compiler uses simple control-flow analysis

Types without attachment mark

 Currently defaults to detachable

 In future will be switched to attached

9

Attached types demo

EiffelStudio settings

Declaration

Error messages

10

Certified attachment pattern (CAP)

Code patterns where attachment is guaranteed

Basic CAP for locals and arguments

 Void check in conditional or semi-strict operator

 Setter or creation

 capitalize (a_string: detachable STRING)
 do
 if a_string /= Void then
 a_string.to_upper
 end
 ensure
 a_string /= Void implies a_string.is_upper
 end

11

CAP demo

Different CAPs for locals and arguments

 Void check in contract

 Void check in conditional

 Setter

 Creator

12

Object test

Checking attachment of an expression (and its type)

Assignment to a local

 Local is not declared and only available in one branch

 name: detachable STRING

 capitalize_name
 do
 if attached name as l_name then
 l_name.to_upper
 end
 ensure
 attached name as n and then n.is_upper
 end

13

Object test demo

Object test in body

Object test in assertion

Object test to test for type

14

Stable attributes

Detachaed attributes which are never set to void

They are initially void, but once attached will stay so

The basic CAPs work for them as well

 stable name: detachable STRING

 capitalize_name
 do
 if name /= Void then
 name.to_upper
 end
 end

15

Stable demo

Feature annotations

CAP with stable attributes

Assigning to stable attributes

16

Void-safety in other languages: Spec#

Research variant of C#

Adds contracts and non-null types (and more)

Non-null types are marked with !

 String s = null;

 String! s = „abc“;

 String! s = null;

17

Void-safety in other languages: JML

Research variant of Java

Adds contracts and non-null types (and more)

Types (except locals) are non-null per default

 String s = null;

 String s = „abc“;

 /*@ nullable @*/ String s = null;

