Einfihrung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 11



News (Reminder)

Mock exam next week!

» Monday exercise groups: December 5

» Tuesday exercise groups: December 6

> You have to be present

» The week after we will discuss the results



Today

» Multiple inheritance




Combining abstractions

Given the classes
» TRAIN_CAR, RESTAURANT
how would you implement a DINER?



Inheritance is never the only way

Given the classes
» TRAIN_CAR, RESTAURANT
how would you implement a DINER?
> You could have an attribute in TRAIN_CAR
train_service: SERVICE
> Then have RESTAURANT inherit from SERVICE

> This is flexible if the kind of service may change to
a type that is unrelated to TRAIN_CAR

> Changes in TRAIN_CAR do not affect SERVICE
easily



Examples of multiple inheritance

Combining separate abstractions:

> Restaurant, train car
> Calculator, watch

> Other examples?




Examples of multiple inheritance

Combining separate abstractions:

> Restaurant, train car
> Calculator, watch

> Other examples?

> Teacher, student
> Home, vehicle




Multiple inheritance: Combining abstractions ©

< <= R—— | + -
3 52 (COMPARABLE ) NUMERIC ) +' /'

r
(total order
relation)
(INTEGER )
( REAL )

( STRING ) ( COMPLEX )




Composite figures

& o




Multiple inheritance: Composite figures

N\

29

/

Simple figures

K

A composite figure

/

K

10



Defining the notion of composite figure ©

center S—
' - LIST

adispl

h;'a’/; v FIGURE [FIGURE] coc;m‘
rofafte ﬁgmo .
move

COMPOSITE
FIGURE

11



In the overall structure ©

LIST
| FIGURE]

CLOSED
IGUR

perimeter™

COMPOSITE.
FIGURE

ELLIPSE

perimeter perimeter
diagonal

) RECTANGLE) CIkCL r-
TRIANGL perimeter™  perimetert*
SQUAR

perimeter™

12



A composite figure as a list

O

before

r

T‘ forth ]

Cursor

after

13



Composite figures

class COMPOSITE FIGURE inherit
FIGURE

LIST[FIGURE]
feature
display
do Display each constituent figure in turn.

from startuntil afterloop

item.display

end forth Requihes dynamic
end binding

.. Similarly for move, rotate etc. ...

end

14



An alternative solution: the composite pattern ©

- LIsT
FIEURE [ FIGURE]

AAL

figure_list

—

COMPOSITE.
FIGURE

perimeter’ perimeter”

diagonal

RECTANGL (CIRCLE)
perimeter™  perimeter'*

(SQUARE)

perimeter™

15



Lessons from this example

Typical example of program with holes

We need the full spectrum from fully abstract (fully
deferred) to fully implemented classes

Multiple inheritance is there to help us combine
abstractions

17



Multiple inheritance: Name clashes %

f@ @f

) ?

18



Resolving name clashes %

FA) 8 ) f

‘ rename fas A _f |

(¢ ) AFfT

19



Consequences of renaming %
Valid or invalid? |
al: A ' @ > i

bl:. B
cl: C

| rename 7 as A_f\
cl.f Valid (¢ ) AfFf

alA_f Invalid
clA F Valid
blf Valid

blA_f ‘ Tnvalid

20



Are all name clashes bad?

A name clash must be removed unless it is:
> Under repeated inheritance (i.e. not a real clash)

> Between features of which at most one is effective
(i.e. others are deferred)

21



Feature merging ©

LAY ~(B) (el
A

P4

* Deferred
" Effective

22



Feature merging: with different names

/class \

D
inherit
A
rename

gas f
end

B

C
rename
has f
end

feature

| end ;

A)e (B)F (D
A

AN,

f Deferred P

" Effective

N\, Renaming

~ =

23



Feature merging: effective features ©

Fl 4 () 8) e
/ﬁ

PN

f Deferred
" Effective

~~ Undefine
N\ —

24



Undefinition

deferred class
T
inherit
S
undefine vend

feature

end

25



Merging through undefinition

0,

LA ) (£ 8 ) (c )T
4

(Class B
O

inherit
A
undefine 7 end

B

C
undefine 7 end

feature

o

f Deferred P

" Effective

~~ Undefine
./

26



Merging effective features with different names ©

Gass
O

inherit
A
undefine fend

B
rename
gas f
undefine 7
end

C
rename
has
end

\ feature ... end ‘

Ff A) 9° (B) (4] c )
3 A

27



Acceptable name clashes

If inherited features have all the same names, there is no
harmful name clash if:

> They all have compatible signatures
» At most one of them is effective

Semantics of such a case:
> Merge all features into one

> If there is an effective feature, it imposes its
implementation

0,

28



Exercise: All-in-one-device

PRINTER SN S A

—ALL_IN ONE_DEVICE

30



Exercise: All-in-one-device

class PRINTER
feature
print_page -- Print a page.
do
print ("Printer prints a page...")
end

switch_on -- Switch from off to on'
do
print ("Printer switched on...")
end

end

class FAX
feature
send -- Send a page over the phone neft.
do
print ("Fax sends a page...")
end

start -- Switch from of¥' to on'
do
print ("Fax switched on...")
end

end

class SCANNER
feature
scan_page -- Scan a page.
do
print ("Scanner scans a page...")
end

switch_on -- Switch from off' to on'
do
print ("Scanner switched on...")
end

send -- Send data to PC.
do
print ("Scanner sends data...")
end

end

31



Exercise: All-in-one-device

PRINTER _ « SCANNER Eax

« ALL_IN_ONE_DEVICE

class

ALL_IN_ONE_DEVICE How to resolve the name
inherit clashes?

> switch_on
end

> send

32



Exercise: All-in-one-device

class ALL_IN_ONE_DEVICE

inherit
PRINTER
rename
switch_onas start
undefine
start
end

SCANNER
rename
switch_onas start,
send as send data
end

FAX
rename
send as send_message
undefine
start
end

feature ... end

33



Valid or invalid?

class ALL_IN_ONE_DEVICE

inherit
PRINTER
rename
switch_onas start
undefine
start
end

SCANNER
rename
switch_onas start,
send as send_data
end

FAX
rename
send as send_message
undefine
start
end

feature ... end

s: SCANNER
f: FAX

a: ALL_IN_ONE_DEVICE

> a.switch_on

» a.print_page

> f.send_message
> s.switch_on

> f.send

> a.send

Invalid

Valid

Invalid

Valid

Valid

Invalid

34



A special case of multiple inheritance

~ UNIVERSITY

_MEMBER
( TEACHER )

??

/ad

- STUDENT

(ASSISTANT)

2777

l This is a case of repeated inheritance l

35



Indirect and direct repeated inheritance

36



Multiple is also repeated inheritance

A typical case: CANY )
is_equal
/1 AN
e ~

Y

7’
-

copy™ (LIST) el
/s_equal™*

e copy N\, C_copy
( D ) /s_equal N\, C_is_eqgual

27

37



Sharing and replication ©

Features such as 7, not renamed along any of the
inheritance paths, will be shared.

Features such as g, inherited under different names, will be
replicated.

38



The need for select

A potential ambiguity arises because of polymorphism and
dynamic binding:

| ANy :p;c]ua/
al: ANY — -

a’]: D // \\
LIST @
COP}/++

/s_equal™
al .= di
\ % ™ C_copy
al, copy(...) Is_egual~s C_is_equal

&)

39



Removing the ambiguity ©

class
D
inherit
LIST [T]
(select )
copy.
/s_equal
end
C
rename

copy as C_copy,
/s_equalas C_is_equal,

end
40



When is a name clash acceptable?

(Between n features of a class, all with the same name,
immediate or inherited.)

> They must all have compatible signatures.

> Lf more than one is effective, they must all come
from a common ancestor feature under repeated
inheritance.

41



