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Today 

 Reference types vs. expanded types 

 Assignment 

 Basic types 

 Local variables 

 Qualified and unqualified calls 

 Entities and variables: summary 
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What are reference and expanded types? 

Reference types: s contains the address (reference, or 
location), of the object. 

Example: 

 

 s : STATION 

 

Expanded types: p points directly to the object. 

Example: 

 

 p : POINT 

s 

(STATION ) 

p 

AB3409E1 

A00897BC 

1.2 
5.0 

(POINT ) 

AB3409E1 
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Declaration of reference and expanded types 

Objects of reference types: they don‟t exist when we 
declare them (they are initially Void). 

 s : STATION  

We need to explicitly create them with a create 
instruction. 

  create s 

Objects of expanded types: they exist by just declaring 
them (they are never Void) 

 p : POINT 
Feature default_create from ANY is implicitly invoked on 

them 
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Can expanded types contain reference types? 

Expanded types can contain reference types, and vice 
versa. 

c 

(SOME_CLASS ) 

(COUPLE ) 

(HUMAN) 

(HUMAN) 
10 

20 
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Reference equality 

a = b ? 

a = b ? 

1.0 
2.0 

(VECTOR ) 

a b 

1.0 
2.0 

(VECTOR ) 

1.0 
2.0 

(VECTOR ) 

b a 
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Expanded entities equality 

Entities of expanded types are compared by value! 

a = b ? 

a 1.2 
5.0 

(SOME_CLASS ) 

(POINT ) 

b 1.2 
5.0 

(POINT ) 
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Expanded entities equality 

(SOME_CLASS ) 

(HUMAN) 

32 
John 

(HUMAN) 

b 

a 

30 
Jane 

(HUMAN) 

32 
John 

(HUMAN) 

30 
Jane 

a = b ? 

(COUPLE ) 
10 

(COUPLE ) 
10 
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Expanded entities equality  

(HUMAN) 

32 
John 

(HUMAN) 

30 
Jane 

a = b ? 

(SOME_CLASS ) 

b 

a 

(COUPLE ) 
10 

(COUPLE ) 
10 
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Why expanded types? 

Representing basic types (INTEGER, REAL,…) 

Modeling external world objects realistically, i.e. 
describing objects that have sub-objects (and no sharing), 
for example a class WORKSTATION and its CPU. 

Possible efficiency gain. 

Interface with other languages. 
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Assignment 

Assignment is an instruction (What other instructions do 
you know?) 

Syntax: 

a := b 
 where a is a variable (e.g., attribute) and b is an 

expression (e.g. argument, query call); 

 a is called the target of the assignment and b the 
source. 

Semantics: 

 after the assignment a equals b (a = b); 

 the value of b is not changed by the assignment.  
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Reference assignment 

1.0 
2.0 

(VECTOR ) 

a 
0.0 
-1.0 

(VECTOR ) 

b 

a := b 

a references the same object as b: 

     a = b 
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Expanded assignment 

a 1.2 
5.0 

(POINT ) 

b -2.0 
7.8 

(POINT ) 

a := b 

The value of b is copied to a, but again: 

     a = b 

-2.0 
7.8 
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Assignment 

Explain graphically the effect of an  

assignment: 

(HUMAN) 

32 
„John“ 

(HUMAN) 

a 

30 
„Jane“ 

(HUMAN) 

25 
„Dan“ 

(HUMAN) 

24 
„Lisa“ 

(COUPLE ) 
10 

a := b 

b 

(COUPLE ) 
4 4 

Here COUPLE is an expanded class, HUMAN is a 
reference class 
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Attachment 

 More general term than assignment 

 Includes: 

 Assignment 

a := b 
 

 Passing arguments to a routine 

f (a: SOME_TYPE) 

 do … end 

 

f (b) 

 Same semantics 
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Dynamic aliasing 

a, b: VECTOR 

… 

create b.make (1.0, 0.0) 

a := b 
 

 now a and b reference the same object (they are two 
names or aliases of the same object) 

 any change to the object attached to a will be reflected 
when accessing it using b 

 any change to the object attached to b will be reflected 
when accessing it using a 

1.0 
0.0 

(VECTOR ) 

a 

b 
x 

y 
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Dynamic aliasing 

What are the values of a.x, a.y, b.x and  

b.y after executing instructions 1-4? 

 

 a, b: VECTOR 
 … 

 create a.make (-1.0, 2.0) 

1 create b.make (1.0, 0.0) 

2 a := b 

3 b.set_x (5.0) 

4 a.set_y (-10.0) 

5.0 
-10.0 

(VECTOR ) 

a 

b 
x 

y 
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How to declare an expanded type 

To get an expanded type, declare a class with keyword 
expanded: 

expanded class COUPLE 

feature -- Access 

 man, woman: HUMAN 

 years_together: INTEGER 

end 

 

Now all the entities of type COUPLE will automatically 
become expanded: 

pitt_and_jolie: COUPLE  
Expanded 

Reference 

? 
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Basic types 

Their only privilege is to use manifest constants to 
construct their instances: 

 

b: BOOLEAN 
x: INTEGER 

c: CHARACTER 

s: STRING 

… 

b := True 

x := 5    -- instead of create x.make_five 

c := „c‟  

s := “I love Eiffel” 
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Basic types 

 Some basic types (BOOLEAN, INTEGER, NATURAL, 
REAL, CHARACTER) are expanded… 

 

a := b 
 

  

 

… and immutable (they do not contain commands to 
change the state of their instances)… 

 

a := a.plus (b)  instead of  a.add (b)  

5 b 3 a 

5 a 5 b 

a + b 

Alias for add 



21 

Strings are a bit different 

Strings in Eiffel are not expanded… 

 

s: STRING 

 

 

 

 

… and not immutable 

 

s := “I love Eiffel” 

s.append (“ very much!”) 

I l o v ... 

... 
13 

s area 

count 

e 
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String comparison: = versus is_equal 

s1: STRING = “Teddy” 

s2: STRING = “Teddy” 

… 

s1 = s2 -- False: reference comparison on different objects 

 

s1.is_equal (s2) –True 

… 

 

Now you know what to do if interested in comparing the 
content of two strings 
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Initialization 

Default value of any reference type is Void 

Default values of basic expanded types are: 

 False for BOOLEAN 

 0 for numeric types (INTEGER, NATURAL, REAL) 

 “null” character (its code is 0) for CHARACTER 

Default value of a non-basic expanded type is an object, 
whose fields have default values of their types  

(COUPLE ) 
0 



24 

Initialization 

What is the default value for the following  
classes? 
 
expanded class POINT 
feature x, y: REAL end 
 

class VECTOR 

feature x, y: REAL end 

STRING 

0.0 
0.0 

(POINT) 

x 

y 

Void 

Void 
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 Expanded classes are not creatable using a creation 
feature of your choice 
expanded class POINT 
create make 
feature make do x := 5.0; y := 5.0 end 
 ... 
end 

 But you can use (and possibly redefine) default_create 
expanded class POINT 
inherit ANY  
 redefine default_create 
feature  
 default_create  
  do  
   x := 5.0; y := 5.0  
  end 
end 

Custom initialization for expanded types 
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Some variables are only used by a certain routine. 

 Declare them as local: 

feature 

 f  (arg1: A …) 

  require ... 

  local 

   x, y : B 
   z : C 

  do …  

   

  ensure ... 

  end  

Local variables 
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The scope of names 

Attributes: 

 declared anywhere inside a feature clause, but 
outside other features 

 visible anywhere inside the class 

 visible outside the class (depending on their visibility) 

Formal arguments: 

 declared after the feature name, in parenthesis 

 only visible inside the feature body and its contracts 

Local variables: 

 declared in a local clause inside the feature 
declaration 

 only visible inside the feature body 
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Compilation error? (1) 

class PERSON 
feature 
 name: STRING 
 
 set_name (a_name: STRING)  
  do  
   name := a_name  
  end 
 exchange_names (other: PERSON) 
  local 
   s: STRING 
  do  
   s := other.name 
   other.set_name (name) 
   set_name (s) 
  end 
 print_with_semicolon 
  do 
   create s.make_from_string (name)  
   s.append (“;”)  
   print (s) 
  end 
end 

 

Error: this variable 
was not declared 
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Compilation error? (2) 

 

class PERSON 
feature 
 … -- name and set_name as before 
 
 exchange_names (other: PERSON) 
  local 
   s: STRING 
  do  
   s := other.name 
   other.set_name (name) 
   set_name (s) 
  end 
 
 print_with_semicolon 
  local 
   s: STRING 
  do 
   create s.make_from_string (name)  
   s.append (“;”)  
   print (s) 
  end 
end 

OK: two different local 
variables in two routines 
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An example of side effects 

 

class PERSON 
 
feature 
 … 
 name: STRING  
  
 print_with_semicolon 
  local 
   s: STRING 
  do 
   create s.make_from_string (name)  
   s.append (“;”)  
   print (s) 
  end 
 
 print_with_sticky_semicolon 
  do 
   name.append (“;”)  
   print (name) 
  end 
end 

Now the semicolon sticks 
to the attribute. This is 

called side effect 
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Compilation error? (3) 

 

class PERSON 
feature 
 … -- name and set_name as before 
 
 s: STRING 
 
 exchange_names (other: PERSON) 
  do  
   s := other.name 
   other.set_name (name) 
   set_name (s) 
  end 
 
 s: STRING 
 
 print_with_semicolon 
  do 
   create s.make_from_string (name)  
   s.append (“;”)  
   print (s) 
  end 
end 

Error: an attribute 
with the same name 
was already defined 
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Compilation error? (4) 

 

class PERSON 
feature 
 … -- name and set_name as before 
 
 exchange_names (other: PERSON) 
  do  
   s := other.name 
   other.set_name (name) 
   set_name (s) 
  end 
 
 print_with_semicolon 
  do 
   create s.make_from_string (name)  
   s.append („;‟)  
   print (s) 
  end 
 
  s: STRING 
end 

OK: a single attribute 
used in both routine 
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Local variables vs. attributes 

 

Which one of the two correct versions  

 (2 and 4) do you like more? Why? 

 

 Describe the conditions under which it is better  

 to use a local variable instead of an attribute and 
 vice versa   
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Result 

 Inside every function you can use the predefined local 
variable Result (you needn‟t and shouldn‟t declare it) 

 The return value of a function is whatever value the 
Result variable has at the end of the function execution 

 At the beginning of routine‟s body Result (as well as 
regular local variables) is initialized with the default 
value of its type  

 Every regular local variable is declared with some type; 
and what is the type of Result?    

 

 It‟s the function return type!    
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Compilation error? (5) 

 

class PERSON 

feature 

 … -- name and set_name as before 

 exchange_names (other: PERSON) 

  do  

   Result := other.name 

   other.set_name (name) 

   set_name (Result) 

  end 

 

 name_with_semicolon: STRING 

  do 

   create Result.make_from_string (name)  

   Result.append(„;‟)  

   print (Result) 

  end 

end 

Error: Result can 
not be used in a 

procedure 
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 In object-oriented computation each routine call is 
performed on a certain object 

 From inside a routine we can access this object using 
the predefined entity Current 

Current 

 

(STATION ) 

x.change_name (y) change_name (n: STRING) 
    do 
 … 
 city.internal_stations.ext
end  
  (Current, n) 
    end     

 What is the type of Current?  
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 If the target of a feature call is Current, it is omitted: 

Current.f (a)  
f (a) 

Revisiting qualified vs. unqualified feature calls 

 

 Such a call is unqualified 

 Otherwise, if the target of a call is specified 
explicitly, the call is qualified 

x.f (a) 
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Qualified or unqualified? 

Are the following feature calls, with their 
feature names underlined, qualified or unqualified?  
What are the targets of these calls? 

1) x.y 

2) x 

3) f (x.a) 

4) x.y.z 

5) x (y.f (a.b)) 

6) f (x.a).y (b) 

7) Current.x 

 

qualified 

unqualified 

unqualified 

qualified 

unqualified 

qualified 

qualified 
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Assignment to attributes 

 Direct assignment to an attribute is only allowed if an 
attribute is called in an unqualified way: 

 y := 5 

 x.y := 5 

 Current.y := 5 

 

 

 

 There are two main reasons for this rule: 

1. A client may not be aware of the restrictions on 
the attribute value and interdependencies with 
other attributes => class invariant violation 
(Example?) 

2. Guess! (Hint: uniform access principle) 

 

OK 

Error 

? Error 
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Entity: the final definition 

 

 variable attribute 

 constant attribute 

Only a variable can be used in a creation instruction and in 
the left part of an assignment   

An entity in program text is a “name” that directly 
denotes an object. More precisely: it is one of 

 attribute name 

 

 

 formal argument name 

 local variable name 

 Result 

 Current 

Read-write entities / variables 

Read-only entities 



41 

Find 5 errors 

class VECTOR 
feature 
 x, y: REAL 
 
 copy_from (other: VECTOR) 
  do  
   Current := other  
  end 
 
 copy_to (other: VECTOR) 
  do 
   create other 
   other.x := x 
   other.y := y 
  end 
 
 reset 
  do 
   create Current 
  end 
end 

 

Current is not a 
variable and can not 

be assigned to 

other is a formal  argument 
(not a variable) and thus can 

not be used in creation 

other.x is a qualified attribute 
call (not a variable) and thus 

can not be assigned to 

the same reason for other.y 

Current is not a variable and 
thus can not be used in 

creation 


