
Chair of Software Engineering

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 5

2

Today

 Reference types vs. expanded types

 Assignment

 Basic types

 Local variables

 Qualified and unqualified calls

 Entities and variables: summary

3

What are reference and expanded types?

Reference types: s contains the address (reference, or
location), of the object.

Example:

 s : STATION

Expanded types: p points directly to the object.

Example:

 p : POINT

s

(STATION)

p

AB3409E1

A00897BC

1.2
5.0

(POINT)

AB3409E1

4

Declaration of reference and expanded types

Objects of reference types: they don‟t exist when we
declare them (they are initially Void).

 s : STATION

We need to explicitly create them with a create
instruction.

 create s

Objects of expanded types: they exist by just declaring
them (they are never Void)

 p : POINT
Feature default_create from ANY is implicitly invoked on

them

5

Can expanded types contain reference types?

Expanded types can contain reference types, and vice
versa.

c

(SOME_CLASS)

(COUPLE)

(HUMAN)

(HUMAN)
10

20

6

Reference equality

a = b ?

a = b ?

1.0
2.0

(VECTOR)

a b

1.0
2.0

(VECTOR)

1.0
2.0

(VECTOR)

b a

7

Expanded entities equality

Entities of expanded types are compared by value!

a = b ?

a 1.2
5.0

(SOME_CLASS)

(POINT)

b 1.2
5.0

(POINT)

8

Expanded entities equality

(SOME_CLASS)

(HUMAN)

32
John

(HUMAN)

b

a

30
Jane

(HUMAN)

32
John

(HUMAN)

30
Jane

a = b ?

(COUPLE)
10

(COUPLE)
10

9

Expanded entities equality

(HUMAN)

32
John

(HUMAN)

30
Jane

a = b ?

(SOME_CLASS)

b

a

(COUPLE)
10

(COUPLE)
10

10

Why expanded types?

Representing basic types (INTEGER, REAL,…)

Modeling external world objects realistically, i.e.
describing objects that have sub-objects (and no sharing),
for example a class WORKSTATION and its CPU.

Possible efficiency gain.

Interface with other languages.

11

Assignment

Assignment is an instruction (What other instructions do
you know?)

Syntax:

a := b
 where a is a variable (e.g., attribute) and b is an

expression (e.g. argument, query call);

 a is called the target of the assignment and b the
source.

Semantics:

 after the assignment a equals b (a = b);

 the value of b is not changed by the assignment.

12

Reference assignment

1.0
2.0

(VECTOR)

a
0.0
-1.0

(VECTOR)

b

a := b

a references the same object as b:

 a = b

13

Expanded assignment

a 1.2
5.0

(POINT)

b -2.0
7.8

(POINT)

a := b

The value of b is copied to a, but again:

 a = b

-2.0
7.8

14

Assignment

Explain graphically the effect of an

assignment:

(HUMAN)

32
„John“

(HUMAN)

a

30
„Jane“

(HUMAN)

25
„Dan“

(HUMAN)

24
„Lisa“

(COUPLE)
10

a := b

b

(COUPLE)
4 4

Here COUPLE is an expanded class, HUMAN is a
reference class

15

Attachment

 More general term than assignment

 Includes:

 Assignment

a := b

 Passing arguments to a routine

f (a: SOME_TYPE)

 do … end

f (b)

 Same semantics

16

Dynamic aliasing

a, b: VECTOR

…

create b.make (1.0, 0.0)

a := b

 now a and b reference the same object (they are two
names or aliases of the same object)

 any change to the object attached to a will be reflected
when accessing it using b

 any change to the object attached to b will be reflected
when accessing it using a

1.0
0.0

(VECTOR)

a

b
x

y

17

Dynamic aliasing

What are the values of a.x, a.y, b.x and

b.y after executing instructions 1-4?

 a, b: VECTOR
 …

 create a.make (-1.0, 2.0)

1 create b.make (1.0, 0.0)

2 a := b

3 b.set_x (5.0)

4 a.set_y (-10.0)

5.0
-10.0

(VECTOR)

a

b
x

y

18

How to declare an expanded type

To get an expanded type, declare a class with keyword
expanded:

expanded class COUPLE

feature -- Access

 man, woman: HUMAN

 years_together: INTEGER

end

Now all the entities of type COUPLE will automatically
become expanded:

pitt_and_jolie: COUPLE
Expanded

Reference

?

19

Basic types

Their only privilege is to use manifest constants to
construct their instances:

b: BOOLEAN
x: INTEGER

c: CHARACTER

s: STRING

…

b := True

x := 5 -- instead of create x.make_five

c := „c‟

s := “I love Eiffel”

20

Basic types

 Some basic types (BOOLEAN, INTEGER, NATURAL,
REAL, CHARACTER) are expanded…

a := b

… and immutable (they do not contain commands to
change the state of their instances)…

a := a.plus (b) instead of a.add (b)

5 b 3 a

5 a 5 b

a + b

Alias for add

21

Strings are a bit different

Strings in Eiffel are not expanded…

s: STRING

… and not immutable

s := “I love Eiffel”

s.append (“ very much!”)

I l o v ...

...
13

s area

count

e

22

String comparison: = versus is_equal

s1: STRING = “Teddy”

s2: STRING = “Teddy”

…

s1 = s2 -- False: reference comparison on different objects

s1.is_equal (s2) –True

…

Now you know what to do if interested in comparing the
content of two strings

23

Initialization

Default value of any reference type is Void

Default values of basic expanded types are:

 False for BOOLEAN

 0 for numeric types (INTEGER, NATURAL, REAL)

 “null” character (its code is 0) for CHARACTER

Default value of a non-basic expanded type is an object,
whose fields have default values of their types

(COUPLE)
0

24

Initialization

What is the default value for the following
classes?

expanded class POINT
feature x, y: REAL end

class VECTOR

feature x, y: REAL end

STRING

0.0
0.0

(POINT)

x

y

Void

Void

25

 Expanded classes are not creatable using a creation
feature of your choice
expanded class POINT
create make
feature make do x := 5.0; y := 5.0 end
 ...
end

 But you can use (and possibly redefine) default_create
expanded class POINT
inherit ANY
 redefine default_create
feature
 default_create
 do
 x := 5.0; y := 5.0
 end
end

Custom initialization for expanded types

26

Some variables are only used by a certain routine.

 Declare them as local:

feature

 f (arg1: A …)

 require ...

 local

 x, y : B
 z : C

 do …

 ensure ...

 end

Local variables

27

The scope of names

Attributes:

 declared anywhere inside a feature clause, but
outside other features

 visible anywhere inside the class

 visible outside the class (depending on their visibility)

Formal arguments:

 declared after the feature name, in parenthesis

 only visible inside the feature body and its contracts

Local variables:

 declared in a local clause inside the feature
declaration

 only visible inside the feature body

28

Compilation error? (1)

class PERSON
feature
 name: STRING

 set_name (a_name: STRING)
 do
 name := a_name
 end
 exchange_names (other: PERSON)
 local
 s: STRING
 do
 s := other.name
 other.set_name (name)
 set_name (s)
 end
 print_with_semicolon
 do
 create s.make_from_string (name)
 s.append (“;”)
 print (s)
 end
end

Error: this variable
was not declared

29

Compilation error? (2)

class PERSON
feature
 … -- name and set_name as before

 exchange_names (other: PERSON)
 local
 s: STRING
 do
 s := other.name
 other.set_name (name)
 set_name (s)
 end

 print_with_semicolon
 local
 s: STRING
 do
 create s.make_from_string (name)
 s.append (“;”)
 print (s)
 end
end

OK: two different local
variables in two routines

30

An example of side effects

class PERSON

feature
 …
 name: STRING

 print_with_semicolon
 local
 s: STRING
 do
 create s.make_from_string (name)
 s.append (“;”)
 print (s)
 end

 print_with_sticky_semicolon
 do
 name.append (“;”)
 print (name)
 end
end

Now the semicolon sticks
to the attribute. This is

called side effect

31

Compilation error? (3)

class PERSON
feature
 … -- name and set_name as before

 s: STRING

 exchange_names (other: PERSON)
 do
 s := other.name
 other.set_name (name)
 set_name (s)
 end

 s: STRING

 print_with_semicolon
 do
 create s.make_from_string (name)
 s.append (“;”)
 print (s)
 end
end

Error: an attribute
with the same name
was already defined

32

Compilation error? (4)

class PERSON
feature
 … -- name and set_name as before

 exchange_names (other: PERSON)
 do
 s := other.name
 other.set_name (name)
 set_name (s)
 end

 print_with_semicolon
 do
 create s.make_from_string (name)
 s.append („;‟)
 print (s)
 end

 s: STRING
end

OK: a single attribute
used in both routine

33

Local variables vs. attributes

Which one of the two correct versions

 (2 and 4) do you like more? Why?

 Describe the conditions under which it is better

 to use a local variable instead of an attribute and
 vice versa

34

Result

 Inside every function you can use the predefined local
variable Result (you needn‟t and shouldn‟t declare it)

 The return value of a function is whatever value the
Result variable has at the end of the function execution

 At the beginning of routine‟s body Result (as well as
regular local variables) is initialized with the default
value of its type

 Every regular local variable is declared with some type;
and what is the type of Result?

 It‟s the function return type!

35

Compilation error? (5)

class PERSON

feature

 … -- name and set_name as before

 exchange_names (other: PERSON)

 do

 Result := other.name

 other.set_name (name)

 set_name (Result)

 end

 name_with_semicolon: STRING

 do

 create Result.make_from_string (name)

 Result.append(„;‟)

 print (Result)

 end

end

Error: Result can
not be used in a

procedure

36

 In object-oriented computation each routine call is
performed on a certain object

 From inside a routine we can access this object using
the predefined entity Current

Current

(STATION)

x.change_name (y) change_name (n: STRING)
 do
 …
 city.internal_stations.ext
end
 (Current, n)
 end

 What is the type of Current?

37

 If the target of a feature call is Current, it is omitted:

Current.f (a)
f (a)

Revisiting qualified vs. unqualified feature calls

 Such a call is unqualified

 Otherwise, if the target of a call is specified
explicitly, the call is qualified

x.f (a)

38

Qualified or unqualified?

Are the following feature calls, with their
feature names underlined, qualified or unqualified?
What are the targets of these calls?

1) x.y

2) x

3) f (x.a)

4) x.y.z

5) x (y.f (a.b))

6) f (x.a).y (b)

7) Current.x

qualified

unqualified

unqualified

qualified

unqualified

qualified

qualified

39

Assignment to attributes

 Direct assignment to an attribute is only allowed if an
attribute is called in an unqualified way:

 y := 5

 x.y := 5

 Current.y := 5

 There are two main reasons for this rule:

1. A client may not be aware of the restrictions on
the attribute value and interdependencies with
other attributes => class invariant violation
(Example?)

2. Guess! (Hint: uniform access principle)

OK

Error

? Error

40

Entity: the final definition

 variable attribute

 constant attribute

Only a variable can be used in a creation instruction and in
the left part of an assignment

An entity in program text is a “name” that directly
denotes an object. More precisely: it is one of

 attribute name

 formal argument name

 local variable name

 Result

 Current

Read-write entities / variables

Read-only entities

41

Find 5 errors

class VECTOR
feature
 x, y: REAL

 copy_from (other: VECTOR)
 do
 Current := other
 end

 copy_to (other: VECTOR)
 do
 create other
 other.x := x
 other.y := y
 end

 reset
 do
 create Current
 end
end

Current is not a
variable and can not

be assigned to

other is a formal argument
(not a variable) and thus can

not be used in creation

other.x is a qualified attribute
call (not a variable) and thus

can not be assigned to

the same reason for other.y

Current is not a variable and
thus can not be used in

creation

