
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

Mock Exam 2

ETH Zurich

December 5,6 2011

Name:

Group:

Question Max Points Points

1 10

2 11

3 15

4 12

Total 48

1

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

1 Terminology (10 Points)

Goal

This task will test your understanding of the object-oriented programming concepts presented
so far in the lecture. This is a multiple-choice test.

Todo

Place a check-mark in the box if the statement is true. There may be multiple true statements
per question; 0.5 points are awarded for checking a true statement or leaving a false statement
un-checked, 0 points are awarded otherwise.

—————————————————————————————————
Example:

1. Which of the following statements are true?

a. Classes exist only in the software text; objects exist only
during the execution of the software.

�

b. Each object is an instance of its generic class. �

c. An object is deferred if it has at least one deferred feature. �

—————————————————————————————————

1.1 Solution

1. Classes and objects.

a. A class may be created at run-time. �

b. A class may be deferred or effective. �

c. An object may be created at run-time. �

d. An object may be deferred or effective. �

2. Features.
a. Every feature is either a routine or a procedure. �

b. Every query is either an attribute or a function. �

c. The result value of commands is always computed. �

d. Every command is implemented as a procedure. �

3. Inheritance and polymorphism.

a. A class can always call all features of its immediate parent
classes.

�

b. When different parents of a class have features with the same
name, you always have to rename all but one of them.

�

c. An object attached to a polymorphic entity can change its
type at runtime.

�

d. If the target variable and source expression of an attachment
have different types, then the attachment is polymorphic.

�

2

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

4. Generics.
a. Different generic derivations of the same generic class always
conform to each other.

�

b. A generic class is a class that has one or more generic param-
eters.

�

c. Only non-generic classes can be used as generic parameters. �

d. Genericity is used to specialize a class and inheritance is used
to parametrize a class.

�

5. Contracts.
a. It is the responsability of the caller of a routine that the
precondition of the routine is satisfied.

�

b. It is the responsability of the caller of a routine that the class
invariant of the target object is satisfied.

�

c. If a loop is never executed (the exit condition is true from the
beginning) then the loop invariant does not have to hold.

�

d. If a routine redefinition contains a new postcondition, this
condition has to hold in addition to the inherited postcondition.

�

3

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

2 Design by Contract (11 Points)

Classes CARD and DECK are part of a software system that models a card game. The following
is an extract from the game rules booklet:

1. A deck is initially made of 36 cards.

2. Every card represents a value in the range 2..10. Furthermore, every card represents one
color out of four possible colors.

3. The colors represented in the game cards are red (’R’), white (’W’), green (’G’) and blue
(’B’).

4. The players can look at the top card and if there are cards left remove the top card.

Your task is to fill in the contracts of the two classes CARD and DECK (preconditions,
postconditions and class invariants), according to the specification given. You are not allowed
to change the interfaces of the classes or any of the already given implementations. Note that
the number of dotted lines does not indicate the number of assertions that you have to provide,
or if you have to provide a contract at all.

2.1 Solution

class
CARD

create
make

feature −− Creation

make (a color: CHARACTER; a value: INTEGER)
−− Create a card given a color and a value.

require
is valid color (a color)
is in range (a value)

do
color := a color
value := a value

ensure
color set : color = a color
value set : value = a value

end

feature −− Status report

color : CHARACTER
−− The card color

value : INTEGER
−− The card value

is valid color (c: CHARACTER): BOOLEAN
−− Is ‘c’ a valid color?

4

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

do
Result := (c = ’R’ or c = ’B’ or c = ’W’ or c = ’G’)

ensure
Result = (c = ’R’ or c = ’B’ or c = ’W’ or c = ’G’)

end

is in range (n: INTEGER): BOOLEAN
−− Is ‘n’ in the acceptable range of values?

do
Result := (2 <= n and n <= 10)

ensure
Result = (2 <= n and n <= 10)

end

invariant
valid color : is valid color (color)
valid range : is in range (value)

end

class
DECK

create
make

feature −− Creation

make
−− Create deck.

do
create card list
across << ’R’, ’B’, ’W’, ’G’ >> as c loop

across 2 |..| 10 as n loop
card list .extend back (create {CARD}.make (c.item, n.item))

end
end

ensure
deck filled : count = 36

end

feature −− Status report

is empty: BOOLEAN
−− Is this deck empty?

do
Result := card list .is empty

ensure
Result = card list.is empty

end

count: INTEGER

5

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

−− Number of remaining cards in deck.
do

Result := card list .count
ensure

Result = card list.count
end

feature −− Access

top card : CARD
−− Top card of deck.

do
if not card list .is empty then

Result := card list . last
end

ensure
no card when empty: is empty implies Result = Void
right card when not empty: not is empty implies Result = card list.last

end

feature −− Basic operations

remove top card
−− Remove top card from deck.

require
not empty: not is empty

do
card list .remove back

ensure
one card less in deck : count = old count − 1
remaining cards still there :

across card list as i all i .item = (old card list) .item (i .index) end
end

shuffle
−− Shuffle remaining cards.

local
l new list : V LINKED LIST [CARD]

l random: V RANDOM
i : INTEGER

do
from

create l random
create l new list

until
card list .is empty

loop
l random.forth
i := l random.bounded item (1, card list .count)
l new list .extend back (card list .item (i))
card list .remove at (i)

variant

6

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

card list .count
end
card list := l new list

ensure
count unchanged: count = old count
cards unchanged: across old card list as c all card list .has (c.item) end

end

feature {NONE} −− Implementation

card list : V LINKED LIST [CARD]
−− Implementation of the card list

invariant
is legal deck : 0 <= count and count <= 36
card list attached : card list /= Void

count empty relation : is empty = (count = 0)
cards attached : not card list .has (Void)

end

7

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

3 Inheritance (15 points)

Below you see the class GAME CHARACTER. The class represents game characters. There
are three types of game characters: dragon, marshmallow man and zombie. Every character has
a health level in the range of 0 to 100, where 0 means that the character is dead and 100 that it
has full strength. Since zombies are dead by definition, their health level stays at 0 at all times.
Each of the character types has a damage potential that it can inflict on others. For all of them
the damage doubles if the character is angry.

Listing 1: Class GAME CHARACTER

class
2 GAME CHARACTER

4 create
make

6
feature −− Initialization

8
make (t: INTEGER)

10 −− Initialize with type ‘t ’.
require

12 t valid : (t = marshmallow man xor t = dragon xor t = zombie) and not
(t = marshmallow man and t = dragon and t = zombie)

14 do
type := t

16 if type = zombie then
health := 0

18 else
health := 100

20 end
ensure

22 type set : type = t
end

24
feature −− Access

26
type : INTEGER

28 −− Type of character

30 health : INTEGER
−− Health of character (0: dead, 100: full strength)

32
damage: INTEGER

34 −− Damage that the character can do
do

36 if type = zombie then
Result := zombie damage

38 elseif type = marshmallow man then
Result := marshmallow man damage

40 else
Result := dragon damage

42 end

8

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

if is angry then
44 Result := Result ∗ 2

end
46 ensure

zombie: not is angry and type = zombie implies Result = zombie damage
48 angry zombie: is angry and type = zombie implies Result = 2∗zombie damage

dragon: not is angry and type = dragon implies Result = dragon damage
50 angry dragon: is angry and type = dragon implies Result = 2∗dragon damage

marshmallow man: not is angry and type = marshmallow man implies Result =
marshmallow man damage

52 angry marshmallow man: is angry and type = marshmallow man implies Result = 2∗
marshmallow man damage

end
54

feature −− Status report
56

is dead : BOOLEAN
58 −− Is the character dead?

do
60 Result := (health = 0)

ensure
62 Result set : Result = (health = 0)

end
64

is angry : BOOLEAN
66 −− Is the character angry?

−− (Then it can do more damage!)
68

feature −− Element change
70

set health (h: INTEGER)
72 −− Set ‘health’ to ‘h ’.

require
74 h valid : h >= 0 and h <= 100

h for zombie: type = zombie implies h = 0
76 do

health := h
78 ensure

health set : health = h
80 end

82 set angry (b: BOOLEAN)
−− Set ‘is angry’ to ‘b ’.

84 do
is angry := b

86 ensure
is angry set : is angry = b

88 end

90 feature −− Constants

92 marshmallow man: INTEGER = 1

9

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

−− Marshmallow man
94

dragon: INTEGER = 2
96 −− Dragon

98 zombie: INTEGER = 3
−− Zombie (is always dead)

100
zombie damage: INTEGER = 1

102 −− Damage that a zombie does

104 dragon damage: INTEGER = 2
−− Damage that a dragon does

106
marshmallow man damage: INTEGER = 3

108 −− Damage that a marshmallow man does

110 invariant

112 type valid : (type = marshmallow man xor type = dragon xor type = zombie) and not (
type = marshmallow man and type = dragon and type = zombie)

health valid : health >= 0 and health <= 100
114 zombie always dead: type = zombie implies health = 0

116 end

The above code does not exhibit a nice object-oriented design and it can hardly be called
reusable. Redesign the code such that it uses inheritance instead of the type attribute to repre-
sent the three types of game characters. Write a deferred ancestor class NEW GAME CHARACTER
and effective descendants ZOMBIE, MARSHMALLOW MAN, and DRAGON that inherit from
NEW GAME CHARACTER.

Your design should

• result in the deletion of the type attribute.

• result in the same behavior for the three types of game characters as the original code of
class GAME CHARACTER.

• include semantically equivalent contracts as the original code of class GAME CHARACTER.

If a feature stays the same in your re-factored code as in the original code, please indicate it
by giving the full feature signature and adding a comment -- See original.

Example:

is dead : BOOLEAN
−− See original.

10

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

Listing 2: Class NEW GAME CHARACTER

deferred class
2 NEW GAME CHARACTER

4 feature −− Access

6 health : INTEGER
−− Health of character (0: dead, 100: full strength)

8
damage: INTEGER

10 −− Damage that the character can do
do

12 Result := damage constant
if is angry then

14 Result := Result ∗ 2
end

16 ensure
not angry: not is angry implies Result = damage constant

18 angry: is angry implies Result = 2∗damage constant
end

20
feature −− Status report

22
is dead : BOOLEAN

24 −− Is the character dead?
do

26 Result := (health = 0)
ensure

28 Result set : Result = (health = 0)
end

30
is angry : BOOLEAN

32 −− Is the character angry?
−− (Then it can do more damage!)

34
is valid health (h: INTEGER): BOOLEAN

36 −− Is ‘h’ a valid health for the character?
deferred

38 ensure
Result implies (h >= 0 and h <= 100)

40 −− other possiblilty : no postcondition
end

42
feature −− Element change

44
set health (h: INTEGER)

46 −− Set ‘health’ to ‘h ’.
require

48 h valid : is valid health (h)
do

50 health := h
ensure

11

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

52 health set : health = h
end

54
set angry (b: BOOLEAN)

56 −− Set ‘is angry’ to ‘b ’.
do

58 is angry := b
ensure

60 is angry set : is angry = b
end

62
feature −− Constants

64
damage constant: INTEGER

66 −− Damage that a character does
deferred

68 end

70 invariant

72 health valid : is valid health (health)
−− other possiblilty : health >= 0 and health <= 100

74
end

Listing 3: Class ZOMBIE

class
2 ZOMBIE

4 inherit

6 NEW GAME CHARACTER

8 create
make

10
feature −− Initialization

12
make

14 −− Initialize health 0.
do

16 health := 0
ensure

18 health set : health = 0
end

20
feature −− Status report

22
is valid health (h: INTEGER): BOOLEAN

24 −− Is ‘h’ a valid health for the character?
do

26 Result := (h = 0)

12

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

ensure then
28 Result = (h = 0)

end
30

feature −− Constants
32

damage constant: INTEGER = 1
34

invariant
36

zombie always dead: health = 0
38

end

Listing 4: Class DRAGON

class
2 DRAGON

4 inherit

6 NEW GAME CHARACTER

8 create
make

10
feature −− Initialization

12
make

14 −− Initialize with health 100.
do

16 health := 100
ensure

18 health set : health = 100
end

20
feature −− Status report

22
is valid health (h: INTEGER): BOOLEAN

24 −− Is ‘h’ a valid health for the character?
do

26 Result := (h >= 0 and h <= 100)
ensure then

28 Result = (h >= 0 and h <= 100)
end

30
feature −− Constants

32
damage constant: INTEGER = 2

34
end

13

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

Listing 5: Class MARSHMALLOW MAN

class
2 MARSHMALLOW MAN

4 inherit

6 NEW GAME CHARACTER

8 create
make

10
feature −− Initialization

12
make

14 −− Initialize with health 100.
do

16 health := 100
ensure

18 health set : health = 100
end

20
feature −− Status report

22
is valid health (h: INTEGER): BOOLEAN

24 −− Is ‘h’ a valid health for the character?
do

26 Result := (h >= 0 and h <= 100)
ensure then

28 Result = (h >= 0 and h <= 100)
end

30
feature −− Constants

32
damage constant: INTEGER = 3

34
end

14

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

4 Tree Iteration (12 Points)

The following class TREE [G] represents n-ary trees. A tree consists of a root node, which can
have arbitrarily many children nodes. Each child node itself can have arbitrarily many children.
In fact each child node itself is a tree, with itself as a root node.

class TREE [G]

create
make

feature {NONE} −− Initialization

make (v: G)
−− Create new cell with value ‘v’.

require
v not void : v /= Void

do
value := v
create children

ensure
value set : value = v

end

feature −− Access

value : G
−− Value of node

children : V LINKED LIST [TREE [G]]
−− Child nodes of this node

feature −− Insertion

put (v: G)
−− Add child cell with value ‘v’ as last child .

require
v not void : v /= Void

local
c: TREE [G]

do
create c.make (v)
children .extend back (c)

ensure
one mode: children.count = old children.count + 1
inserted : children . last .value = v

end

invariant
children not void : children /= Void
value not void : value /= Void

end

15

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

The following gives relevant aspects of the interface of class V LINKED LIST [G] and
V LINKED LIST ITERATOR [G].

class interface V LINKED LIST [G]

feature −− Access

first : G
−− First element.

require
not empty: not is empty

last : G
−− Last element.

require
not empty: not is empty

item (i : INTEGER): G
−− Value at position ‘i ’.

require
has key: has index (i)

feature −− Status report

is empty: BOOLEAN
−− Is container empty?

feature −− Extension

extend back (v: G)
−− Insert ‘v’ at the back.

extend front (v: G)
−− Insert ‘v’ at the front .

feature −− Measurement

count: INTEGER
−− Number of elements.

feature −− Iteration

new cursor: V LINKED LIST ITERATOR [G]
−− New iterator pointing to the first position .

end

class interface V LINKED LIST ITERATOR [G]

create
default create

feature −− Access

16

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

item: G
−− Item at current position.

require
not off : not off

index: INTEGER 32
−− Current position.

feature −− Status report

off : BOOLEAN
−− Is current position off scope?

after : BOOLEAN
−− Is current position after the last container position?

before : BOOLEAN
−− Is current position before the first container position?

feature −− Cursor movement

start
−− Go to the first position .

ensure
index effect : index = 1

finish
−− Go to the last position.

ensure
index effect : index = sequence.count

forth
−− Move one position forward.

require
not off : not off

back
−− Go one position backwards.

require
not off : not off

invariant
not both : not (after and before)
before constraint : before implies off
after constraint : after implies off

end

17

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

4.1 Traversing the tree

Class APPLICATION below first builds a tree and then prints the values of the tree in two
different ways: pre-order and post-order.

Fill in the missing source code of the features print pre order and print post order so they
will print the node values of an arbitrary tree. For example, a call of feature make in class
APPLICATION should print out the following:

1

1.1

1.1.1

1.1.2

1.2

1.3

1.3.1

1.1.1

1.1.2

1.1

1.2

1.3.1

1.3

1

4.2 Solution

class APPLICATION

create
make

feature

make
−− Run program.

local
root : TREE [STRING]
cell : TREE [STRING]

do
create root.make (”1”)
root .put (”1.1”)
cell := root . children . last
cell .put (”1.1.1”)
cell .put (”1.1.2”)
root .put (”1.2”)
root .put (”1.3”)
cell := root . children . last
cell .put (”1.3.1”)

print pre order (root)
io . put string (”−−−”)
io .put new line

18

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

print post order (root)
end

print pre order (t : TREE [STRING])
−− Print tree in pre−order.

require
t not void : t /= Void

do
−− using across

io . put string (t .value)
io .put new line

across
t . children as i

loop
print pre order (i .item)

end
end

print post order (t : TREE [STRING])
−− Print tree in post−order.

require
t not void : t /= Void

local
i : V LINKED LIST ITERATOR [TREE [STRING]]

do
−− using normal loop

from
i := t . children .new cursor

until
i . off

loop
print post order (i .item)
i . forth

variant
t . children .count − i.index + 1

end

io . put string (t .value)
io .put new line

end

end

19

	Terminology (10 Points)
	Design by Contract (11 Points)
	Inheritance (15 points)
	Tree Iteration (12 Points)
	Traversing the tree

