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Activism and Science
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Voting Machines
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e-Voting Worldwide
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e-Voting in the EU
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Computer-based Voting 
in The Netherlands

dedicated 
computer-based 
voting machines 

since the late 90s

people generally 
trust the government

experiments in remote 
voting for expats

hacking an 
election

recommendations 
to the government KOA

tally system 
developed with 
formal methods 
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Computer-based Voting 
in Ireland

PR-STV
novel social 

vote counting
last-minute secret 

purchase of  €40M in 
Nedap machines

PowerVote
independent 

system 
testing

CEV

Vótáil

scrapping e-voting 
at a cost of €55M

12Thursday, 1 December, 2011



Computer-based Voting 
in Denmark

claim: no 
computers are 
used in voting

in truth: closed-source 
tally system used to 

compute final outcome

people generally 
trust the 

government

regular proposals to 
introduce e-voting 

DiVS

DemTeche-voting trials at 
the local level
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Experiences in Hacking 
Voting Systems

experiences with open 
source e-voting systems

experiences with 
proprietary e-voting 

systems

hacking 
remote 

elections

hacking kiosk-based 
voting computers

analyzing 
academic voting 

systems
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Testing Voting Systems

most open source voting 
systems are not tested

most proprietary voting 
systems are not tested

“hard-core” 
testing is random 
testing of multiple 
implementations

random testing 
is no testing

how does one rigorously 
test a voting system?
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The State of e-Voting 
Software Today
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The Law
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e-Voting Software

char*M,A,Z,E=40,J[40],T[40];main(C){for(*J=A=scanf(M="%d",&C);
--            E;             J[              E]             =T
[E   ]=  E)   printf("._");  for(;(A-=Z=!Z)  ||  (printf("\n|"
)    ,   A    =              39              ,C             --
)    ;   Z    ||    printf   (M   ))M[Z]=Z[A-(E   =A[J-Z])&&!C
&    A   ==             T[                                  A]
|6<<27<rand()||!C&!Z?J[T[E]=T[A]]=E,J[T[A]=A-Z]=A,"_.":" |"];}
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Refinement Relation

∅
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Overall Correctness 
Argument

In our tests, it counts correctly.

Trust us, it works.
How hard can it be, adding 

one over and over?
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The State of Verified 
e-Voting Software Today
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The Law

concept 
analysis

invariants
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e-Voting Software

class_chart LOGICAL_CLOCK

explanation

  "A logical clock."

query

  "What is the current time for this clock?"

command

  "Advance the clock; update the clock's time."

constraint

  "The time must be non-negative.",

  "Must support concurrent use by multiple clients."

end

indexing

  about:        "A logical clock.";

  title:        "TickTockClock";

  author:       "Joe Kiniry";

  copyright:    "Copyright (C) 2007 Joe Kiniry";

  organisation: "School of Computer Science and Informatics, UCD";

  date:         "January 2007";

  version:      "Revision: 11";

static_diagram

component

  deferred class LOGICAL_CLOCK

  feature

    my_time: INTEGER  -- The current time of this clock.

    -- What is the current time of this clock?

    deferred get_logical_time: INTEGER

      -- concurrency: CONCURRENT

      -- modifies: QUERY

      ensure

        Result = my_time;

      end

    deferred advance  -- Advance this clock's time.

      -- concurrency: GUARDED

      -- modifies: my_time

      ensure

        -- This clock's time has monotonically increased.

        old my_time < my_time;

    end

  invariant

    0 <= my_time;

  end -- class LOGICAL_CLOCK

end --component

/**

 * A logical clock.

 * @title         "TickTockClock"

 * @date          "2007/01/23 18:00:49"

 * @author        "Fintan Fairmichael"

 * @organisation  "CSI School, UCD"

 * @copyright     "Copyright (C) 2007 UCD"

 * @version       "$ Revision: 1.7 $"

 */

public interface LogicalClock {

  // The current time of this clock.

  //@ public model instance \bigint _time;

  //@ public invariant 0 <= _time; 

  /**

   * @return What is the current time of this clock?

   * @concurrency CONCURRENT                          

   */

  //@ ensures \result == _time;

  public /*@ pure @*/ long getLogicalTime();

  /**

   * Advance this clock's time.

   * @concurrency GUARDED

   */

  //@ assignable _time;

  //@ ensures \old(_time) < _time;

  //@ ensures (* _time has been increased. *);

  public void advance();

}

/**

 * A logical clock implementation.

 * @author "Joseph Kiniry"

 */

public class LogicalClockImpl implements LogicalClock {

  /** The current logical time. */

  private long my_time = 0; //@ in _time;

  //@ private represents _time <- my_time;

  public long getLogicalTime() {

    return my_time;

  }

  public void advance() {

    my_time++;

  }

}

Informal EBON

Formal EBON

JML

Java

Figure 1: A diagrammatic representation of refinement from EBON to Java.

static_diagram CONCEPTS_AND_RELATIONS
component
deferred class LOGICAL_CLOCK
deferred class ALARM
effective class CLOCK persistent
effective class ALARM_CLOCK persistent

ALARM_CLOCK inherit CLOCK
ALARM_CLOCK inherit ALARM

end

Listing 1: An EBON static diagram describing the core concepts of the running example.

In this example, the concepts identified through domain analysis are alarm, alarm clock, and logical
clock. Their relationships are summarized in the EBON static diagram CONCEPTS AND RELATIONS in
Listing 1. Their definitions are elided in this example.

Each concept is summarized with an informal diagram. An informal diagram describes the concept
and its interfaces in terms of queries, commands, and constraints. Queries and commands are collectively
known as features.

For example, the logical clock must store a time value and, in EBON terminology, support a query to
determine the current time stored in the clock. A command is also necessary to monotonically advance
the time stored in the clock. Furthermore, a constraint states that the time stored in the clock is always
non-negative. Finally, the logical clock must also behave correctly while being used by multiple concurrent
clients.

class_chart LOGICAL_CLOCK
explanation
"A logical clock."

query
"What is the current time of this clock?"

command
"Advance the clock; update the clock’s time."

constraint
"The time must be non-negative.",
"Must support concurrent use by multiple clients."

end

Listing 2: An EBON class chart for LOGICAL CLOCK.

This interface and requirements are expressed using an EBON informal chart. Like most requirement
languages, informal EBON uses structured English to denote analysis concepts and requirements. The
EBON class chart shown in Listing 2 captures this information.
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Refinement Relation

Danish Law Verified Software
(1) Ready to 

Count

(2) No Seats Filled 
Yet

(A) Calculate Quota

 (D) Calculate Number of 
Votes to Transfer

 (4) Candidate Is 
Deemed to be 

Elected

 (6) Surplus 
Available

(C) Calculate Surplus

(B) Find Highest Continuing Candidate With Quota

 (13) Last Seat Being 
Filled (Single Winner IRV) (16) All Seats Filled

(10) Ready to Move 
Ballots

(L) Move the Ballots

(12) Ready for Next 
Round of Counting

(5) No Surplus Available

(J) Select Lowest Continuing 
Candidates for Exclusion

(11) Candidate Excluded

(H) Calculate Transfers

(M) Check Remaining Seats

(15) One or More 
Seats Remaining

(K) Count Continuing Candidates

(14) More Continuing Candidates Than 
Remaining Seats

(18) Just One Continuing 
Candidate For Each 

Remaining Seat

(N) Declare Remaining 
Candidates Elected
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Overall Correctness 
Argument

If the input is as we characterized, then 
we guarantee a correct tally as output.

Proof is aggregate 
modular verification of 
system’s components.
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Automated Testing 
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Formal Verification
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The Law
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e-Voting Test Harness
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e-Voting Test Harness
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e-Voting Test Harness
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Refinement Relation

class_chart LOGICAL_CLOCK

explanation

  "A logical clock."

query

  "What is the current time for this clock?"

command

  "Advance the clock; update the clock's time."

constraint

  "The time must be non-negative.",

  "Must support concurrent use by multiple clients."

end

indexing

  about:        "A logical clock.";

  title:        "TickTockClock";

  author:       "Joe Kiniry";

  copyright:    "Copyright (C) 2007 Joe Kiniry";

  organisation: "School of Computer Science and Informatics, UCD";

  date:         "January 2007";

  version:      "Revision: 11";

static_diagram

component

  deferred class LOGICAL_CLOCK

  feature

    my_time: INTEGER  -- The current time of this clock.

    -- What is the current time of this clock?

    deferred get_logical_time: INTEGER

      -- concurrency: CONCURRENT

      -- modifies: QUERY

      ensure

        Result = my_time;

      end

    deferred advance  -- Advance this clock's time.

      -- concurrency: GUARDED

      -- modifies: my_time

      ensure

        -- This clock's time has monotonically increased.

        old my_time < my_time;

    end

  invariant

    0 <= my_time;

  end -- class LOGICAL_CLOCK

end --component

/**

 * A logical clock.

 * @title         "TickTockClock"

 * @date          "2007/01/23 18:00:49"

 * @author        "Fintan Fairmichael"

 * @organisation  "CSI School, UCD"

 * @copyright     "Copyright (C) 2007 UCD"

 * @version       "$ Revision: 1.7 $"

 */

public interface LogicalClock {

  // The current time of this clock.

  //@ public model instance \bigint _time;

  //@ public invariant 0 <= _time; 

  /**

   * @return What is the current time of this clock?

   * @concurrency CONCURRENT                          

   */

  //@ ensures \result == _time;

  public /*@ pure @*/ long getLogicalTime();

  /**

   * Advance this clock's time.

   * @concurrency GUARDED

   */

  //@ assignable _time;

  //@ ensures \old(_time) < _time;

  //@ ensures (* _time has been increased. *);

  public void advance();

}

/**

 * A logical clock implementation.

 * @author "Joseph Kiniry"

 */

public class LogicalClockImpl implements LogicalClock {

  /** The current logical time. */

  private long my_time = 0; //@ in _time;

  //@ private represents _time <- my_time;

  public long getLogicalTime() {

    return my_time;

  }

  public void advance() {

    my_time++;

  }

}

Informal EBON

Formal EBON

JML

Java

Figure 1: A diagrammatic representation of refinement from EBON to Java.

static_diagram CONCEPTS_AND_RELATIONS
component
deferred class LOGICAL_CLOCK
deferred class ALARM
effective class CLOCK persistent
effective class ALARM_CLOCK persistent

ALARM_CLOCK inherit CLOCK
ALARM_CLOCK inherit ALARM

end

Listing 1: An EBON static diagram describing the core concepts of the running example.

In this example, the concepts identified through domain analysis are alarm, alarm clock, and logical
clock. Their relationships are summarized in the EBON static diagram CONCEPTS AND RELATIONS in
Listing 1. Their definitions are elided in this example.

Each concept is summarized with an informal diagram. An informal diagram describes the concept
and its interfaces in terms of queries, commands, and constraints. Queries and commands are collectively
known as features.

For example, the logical clock must store a time value and, in EBON terminology, support a query to
determine the current time stored in the clock. A command is also necessary to monotonically advance
the time stored in the clock. Furthermore, a constraint states that the time stored in the clock is always
non-negative. Finally, the logical clock must also behave correctly while being used by multiple concurrent
clients.

class_chart LOGICAL_CLOCK
explanation
"A logical clock."

query
"What is the current time of this clock?"

command
"Advance the clock; update the clock’s time."

constraint
"The time must be non-negative.",
"Must support concurrent use by multiple clients."

end

Listing 2: An EBON class chart for LOGICAL CLOCK.

This interface and requirements are expressed using an EBON informal chart. Like most requirement
languages, informal EBON uses structured English to denote analysis concepts and requirements. The
EBON class chart shown in Listing 2 captures this information.

Danish Law Formally-generated 
Test Harness
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Unit Testing from Specs
90% coverage
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Manual System Testing 
from Law

(1) Ready to 
Count

(2) No Seats Filled 
Yet

(A) Calculate Quota

 (D) Calculate Number of 
Votes to Transfer

 (4) Candidate Is 
Deemed to be 

Elected

 (6) Surplus 
Available

(C) Calculate Surplus

(B) Find Highest Continuing Candidate With Quota

 (13) Last Seat Being 
Filled (Single Winner IRV) (16) All Seats Filled

(10) Ready to Move 
Ballots

(L) Move the Ballots

(12) Ready for Next 
Round of Counting

(5) No Surplus Available

(J) Select Lowest Continuing 
Candidates for Exclusion

(11) Candidate Excluded

(H) Calculate Transfers

(M) Check Remaining Seats

(15) One or More 
Seats Remaining

(K) Count Continuing Candidates

(14) More Continuing Candidates Than 
Remaining Seats

(18) Just One Continuing 
Candidate For Each 

Remaining Seat

(N) Declare Remaining 
Candidates Elected

90% coverage with only a 
dozen system tests

36Thursday, 1 December, 2011



System Testing from Law

(1) Ready to 
Count

(2) No Seats Filled 
Yet

(A) Calculate Quota

 (D) Calculate Number of 
Votes to Transfer

 (4) Candidate Is 
Deemed to be 

Elected

 (6) Surplus 
Available

(C) Calculate Surplus

(B) Find Highest Continuing Candidate With Quota

 (13) Last Seat Being 
Filled (Single Winner IRV) (16) All Seats Filled

(10) Ready to Move 
Ballots

(L) Move the Ballots

(12) Ready for Next 
Round of Counting

(5) No Surplus Available

(J) Select Lowest Continuing 
Candidates for Exclusion

(11) Candidate Excluded

(H) Calculate Transfers

(M) Check Remaining Seats

(15) One or More 
Seats Remaining

(K) Count Continuing Candidates

(14) More Continuing Candidates Than 
Remaining Seats

(18) Just One Continuing 
Candidate For Each 

Remaining Seat

(N) Declare Remaining 
Candidates Elected

for every unique 
election outcome
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A Formal Model
 of Voting
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A Parameterized 
Formal Model

 of Several Voting 
Schemes
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Alloy Model
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Law-Alloy Refinement
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Rigorous 
System Test 
Generation
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Core Concepts of 
Elections

candidate

scenario

ballot

election

methodevent
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Core Concepts
• candidate

• votes (set of ballots)

• transfers (set of ballots)

• surplus (set of ballots)

• outcome (event)

• ballot

• assignees (set of candidates)

• preferences (sequence of candidates)
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Core Concepts

• scenario

• losers (set of candidates)

• winners (set of candidates)

• eliminated (set of candidates)

• threshold (integer minimum # of votes to 
not be a sore loser)

• quota (integer minimum # of votes for an 
STV or quota winner)
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Core Concepts
• event, exactly one of...

• Winner, QuotaWinner, CompromiseWinner, 
TiedWinner, TiedLoser, Loser, TiedEarlyLoser, 
EarlyLoser, TiedSoreLoser, SoreLoser

• election

• candidates (set of candidates)

• seats (integer)

• method (plurality or STV)

• ballots (integer # of unspoiled ballots)
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Generating Scenarios
• goal: generate and characterize every possible non-

isomorphism scenario

• election method, # candidates, # seats

• example outcomes

• WL or WL in two candidate plurality

• SSSLLLLLLW with 10 candidates and 1 seat in STV

• scenarios as lemmas

• “I bet there can’t be an election outcome like this!”
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Coupling Systems

• couple Alloy to jUnit

• generate and save system tests in generic 
format for reuse across implementations

• perform code coverage analysis

• characterize system correctness

• identify suspicious parts of an implementation
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Ongoing Results

• generated all scenarios for up to 7 candidates in 
PR-STV using several months of CPU time

• 99.9% code coverage

• early results after only two days of CPU time 
detected two cases missed in scenario analysis

• zero bugs detected in verified counting system
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Summary of Current Affairs
• formally specified, validated, and verified election 

tally software systems for US, NL, IE, and DK

• traceable refinement from law—interpreted as 
concepts, features, and requirements—to 
specifications, software, and proofs

• automatic verification using ESC/Java2

• automated unit tests with 97% coverage

• manual system tests with 97% coverage

• automated system tests with 100% coverage

• all research and development done in “spare time”
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Next Steps
• formal model of elections

• system model that includes people, 
parties, bureaucrats, government

• trust-by-design

• software engineering in the face of an 
adversarial customer (gov. and citizens)

• logic-based voting scheme

• couple LFs to implementation
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DemTech

Danish Council for Strategic Research
Programme Commission on

 Strategic Growth Technologies

Schürmann 
Kiniry

Markussen

Fredericksberg
Aarhus

CopenhagenSiemens
Aion Assembly

Basin (ETHZ)
Ryan (Lux)

5 years
17M direct
32M total
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See DemTech.dk
for more information
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