
Democracy as a
Critical System:

Security, Formal Methods,
and Elections

Joseph Kiniry
IT University of Copenhagen

1Thursday, 1 December, 2011

applied
formal

methods

IT
security

2Thursday, 1 December, 2011

applied
formal

methods

IT
security

3Thursday, 1 December, 2011

applied
formal

methods

IT
security

mathematician
software
engineer

hacker

3Thursday, 1 December, 2011

applied
formal

methods

IT
security

mathematician
software
engineer

hacker

e-voting

3Thursday, 1 December, 2011

Critical Systems

biomedical

avionics

financial
aeronautics

military

nuclear

automotive

transport

4Thursday, 1 December, 2011

Democracy

voting
systems

voter
registration

voting
schemes

casting
ballots

counting
ballots

election
outcomes

voter
trust

government
legitimacy

5Thursday, 1 December, 2011

Activism and Science

society

impact

good

obligation

education

troublemaker

6Thursday, 1 December, 2011

Voting Machines

mechanical
ballot boxes

punchcard
ballots

lever
machines

physical
locks

dedicated
primitive
hardware

society

off-the-shelf
Windows
machines

7Thursday, 1 December, 2011

e-Voting Worldwide
8Thursday, 1 December, 2011

e-Voting Worldwide
9Thursday, 1 December, 2011

e-Voting in the EU
10Thursday, 1 December, 2011

Computer-based Voting
in The Netherlands

dedicated
computer-based
voting machines

since the late 90s

people generally
trust the government

experiments in remote
voting for expats

hacking an
election

recommendations
to the government KOA

tally system
developed with
formal methods

11Thursday, 1 December, 2011

Computer-based Voting
in Ireland

PR-STV
novel social

vote counting
last-minute secret

purchase of €40M in
Nedap machines

PowerVote
independent

system
testing

CEV

Vótáil

scrapping e-voting
at a cost of €55M

12Thursday, 1 December, 2011

Computer-based Voting
in Denmark

claim: no
computers are
used in voting

in truth: closed-source
tally system used to

compute final outcome

people generally
trust the

government

regular proposals to
introduce e-voting

DiVS

DemTeche-voting trials at
the local level

13Thursday, 1 December, 2011

Experiences in Hacking
Voting Systems

experiences with open
source e-voting systems

experiences with
proprietary e-voting

systems

hacking
remote

elections

hacking kiosk-based
voting computers

analyzing
academic voting

systems

14Thursday, 1 December, 2011

Testing Voting Systems

most open source voting
systems are not tested

most proprietary voting
systems are not tested

“hard-core”
testing is random
testing of multiple
implementations

random testing
is no testing

how does one rigorously
test a voting system?

15Thursday, 1 December, 2011

Relating
The Law

to
Software

16Thursday, 1 December, 2011

The State of e-Voting
Software Today

17Thursday, 1 December, 2011

The Law
18Thursday, 1 December, 2011

e-Voting Software

char*M,A,Z,E=40,J[40],T[40];main(C){for(*J=A=scanf(M="%d",&C);
-- E; J[E] =T
[E]= E) printf("._"); for(;(A-=Z=!Z) || (printf("\n|"
) , A = 39 ,C --
) ; Z || printf (M))M[Z]=Z[A-(E =A[J-Z])&&!C
& A == T[A]
|6<<27<rand()||!C&!Z?J[T[E]=T[A]]=E,J[T[A]=A-Z]=A,"_.":" |"];}

19Thursday, 1 December, 2011

Refinement Relation

∅
20Thursday, 1 December, 2011

Overall Correctness
Argument

In our tests, it counts correctly.

Trust us, it works.
How hard can it be, adding

one over and over?

21Thursday, 1 December, 2011

The State of Verified
e-Voting Software Today

22Thursday, 1 December, 2011

The Law

concept
analysis

invariants

23Thursday, 1 December, 2011

e-Voting Software

class_chart LOGICAL_CLOCK

explanation

 "A logical clock."

query

 "What is the current time for this clock?"

command

 "Advance the clock; update the clock's time."

constraint

 "The time must be non-negative.",

 "Must support concurrent use by multiple clients."

end

indexing

 about: "A logical clock.";

 title: "TickTockClock";

 author: "Joe Kiniry";

 copyright: "Copyright (C) 2007 Joe Kiniry";

 organisation: "School of Computer Science and Informatics, UCD";

 date: "January 2007";

 version: "Revision: 11";

static_diagram

component

 deferred class LOGICAL_CLOCK

 feature

 my_time: INTEGER -- The current time of this clock.

 -- What is the current time of this clock?

 deferred get_logical_time: INTEGER

 -- concurrency: CONCURRENT

 -- modifies: QUERY

 ensure

 Result = my_time;

 end

 deferred advance -- Advance this clock's time.

 -- concurrency: GUARDED

 -- modifies: my_time

 ensure

 -- This clock's time has monotonically increased.

 old my_time < my_time;

 end

 invariant

 0 <= my_time;

 end -- class LOGICAL_CLOCK

end --component

/**

 * A logical clock.

 * @title "TickTockClock"

 * @date "2007/01/23 18:00:49"

 * @author "Fintan Fairmichael"

 * @organisation "CSI School, UCD"

 * @copyright "Copyright (C) 2007 UCD"

 * @version "$ Revision: 1.7 $"

 */

public interface LogicalClock {

 // The current time of this clock.

 //@ public model instance \bigint _time;

 //@ public invariant 0 <= _time;

 /**

 * @return What is the current time of this clock?

 * @concurrency CONCURRENT

 */

 //@ ensures \result == _time;

 public /*@ pure @*/ long getLogicalTime();

 /**

 * Advance this clock's time.

 * @concurrency GUARDED

 */

 //@ assignable _time;

 //@ ensures \old(_time) < _time;

 //@ ensures (* _time has been increased. *);

 public void advance();

}

/**

 * A logical clock implementation.

 * @author "Joseph Kiniry"

 */

public class LogicalClockImpl implements LogicalClock {

 /** The current logical time. */

 private long my_time = 0; //@ in _time;

 //@ private represents _time <- my_time;

 public long getLogicalTime() {

 return my_time;

 }

 public void advance() {

 my_time++;

 }

}

Informal EBON

Formal EBON

JML

Java

Figure 1: A diagrammatic representation of refinement from EBON to Java.

static_diagram CONCEPTS_AND_RELATIONS
component
deferred class LOGICAL_CLOCK
deferred class ALARM
effective class CLOCK persistent
effective class ALARM_CLOCK persistent

ALARM_CLOCK inherit CLOCK
ALARM_CLOCK inherit ALARM

end

Listing 1: An EBON static diagram describing the core concepts of the running example.

In this example, the concepts identified through domain analysis are alarm, alarm clock, and logical
clock. Their relationships are summarized in the EBON static diagram CONCEPTS AND RELATIONS in
Listing 1. Their definitions are elided in this example.

Each concept is summarized with an informal diagram. An informal diagram describes the concept
and its interfaces in terms of queries, commands, and constraints. Queries and commands are collectively
known as features.

For example, the logical clock must store a time value and, in EBON terminology, support a query to
determine the current time stored in the clock. A command is also necessary to monotonically advance
the time stored in the clock. Furthermore, a constraint states that the time stored in the clock is always
non-negative. Finally, the logical clock must also behave correctly while being used by multiple concurrent
clients.

class_chart LOGICAL_CLOCK
explanation
"A logical clock."

query
"What is the current time of this clock?"

command
"Advance the clock; update the clock’s time."

constraint
"The time must be non-negative.",
"Must support concurrent use by multiple clients."

end

Listing 2: An EBON class chart for LOGICAL CLOCK.

This interface and requirements are expressed using an EBON informal chart. Like most requirement
languages, informal EBON uses structured English to denote analysis concepts and requirements. The
EBON class chart shown in Listing 2 captures this information.

24Thursday, 1 December, 2011

Refinement Relation

Danish Law Verified Software
(1) Ready to

Count

(2) No Seats Filled
Yet

(A) Calculate Quota

 (D) Calculate Number of
Votes to Transfer

 (4) Candidate Is
Deemed to be

Elected

 (6) Surplus
Available

(C) Calculate Surplus

(B) Find Highest Continuing Candidate With Quota

 (13) Last Seat Being
Filled (Single Winner IRV) (16) All Seats Filled

(10) Ready to Move
Ballots

(L) Move the Ballots

(12) Ready for Next
Round of Counting

(5) No Surplus Available

(J) Select Lowest Continuing
Candidates for Exclusion

(11) Candidate Excluded

(H) Calculate Transfers

(M) Check Remaining Seats

(15) One or More
Seats Remaining

(K) Count Continuing Candidates

(14) More Continuing Candidates Than
Remaining Seats

(18) Just One Continuing
Candidate For Each

Remaining Seat

(N) Declare Remaining
Candidates Elected

25Thursday, 1 December, 2011

Overall Correctness
Argument

If the input is as we characterized, then
we guarantee a correct tally as output.

Proof is aggregate
modular verification of
system’s components.

26Thursday, 1 December, 2011

Governments
do not trust
Verification

27Thursday, 1 December, 2011

Governments
think they trust

Testing

28Thursday, 1 December, 2011

Automated Testing
that complements

Formal Verification

29Thursday, 1 December, 2011

The Law
30Thursday, 1 December, 2011

e-Voting Test Harness
31Thursday, 1 December, 2011

e-Voting Test Harness
32Thursday, 1 December, 2011

e-Voting Test Harness

(1) Ready to
Count

(2) No Seats Filled
Yet

(A) Calculate Quota

 (D) Calculate Number of
Votes to Transfer

 (4) Candidate Is
Deemed to be

Elected

 (6) Surplus
Available

(C) Calculate Surplus

(B) Find Highest Continuing Candidate With Quota

 (13) Last Seat Being
Filled (Single Winner IRV) (16) All Seats Filled

(10) Ready to Move
Ballots

(L) Move the Ballots

(12) Ready for Next
Round of Counting

(5) No Surplus Available

(J) Select Lowest Continuing
Candidates for Exclusion

(11) Candidate Excluded

(H) Calculate Transfers

(M) Check Remaining Seats

(15) One or More
Seats Remaining

(K) Count Continuing Candidates

(14) More Continuing Candidates Than
Remaining Seats

(18) Just One Continuing
Candidate For Each

Remaining Seat

(N) Declare Remaining
Candidates Elected

33Thursday, 1 December, 2011

Refinement Relation

class_chart LOGICAL_CLOCK

explanation

 "A logical clock."

query

 "What is the current time for this clock?"

command

 "Advance the clock; update the clock's time."

constraint

 "The time must be non-negative.",

 "Must support concurrent use by multiple clients."

end

indexing

 about: "A logical clock.";

 title: "TickTockClock";

 author: "Joe Kiniry";

 copyright: "Copyright (C) 2007 Joe Kiniry";

 organisation: "School of Computer Science and Informatics, UCD";

 date: "January 2007";

 version: "Revision: 11";

static_diagram

component

 deferred class LOGICAL_CLOCK

 feature

 my_time: INTEGER -- The current time of this clock.

 -- What is the current time of this clock?

 deferred get_logical_time: INTEGER

 -- concurrency: CONCURRENT

 -- modifies: QUERY

 ensure

 Result = my_time;

 end

 deferred advance -- Advance this clock's time.

 -- concurrency: GUARDED

 -- modifies: my_time

 ensure

 -- This clock's time has monotonically increased.

 old my_time < my_time;

 end

 invariant

 0 <= my_time;

 end -- class LOGICAL_CLOCK

end --component

/**

 * A logical clock.

 * @title "TickTockClock"

 * @date "2007/01/23 18:00:49"

 * @author "Fintan Fairmichael"

 * @organisation "CSI School, UCD"

 * @copyright "Copyright (C) 2007 UCD"

 * @version "$ Revision: 1.7 $"

 */

public interface LogicalClock {

 // The current time of this clock.

 //@ public model instance \bigint _time;

 //@ public invariant 0 <= _time;

 /**

 * @return What is the current time of this clock?

 * @concurrency CONCURRENT

 */

 //@ ensures \result == _time;

 public /*@ pure @*/ long getLogicalTime();

 /**

 * Advance this clock's time.

 * @concurrency GUARDED

 */

 //@ assignable _time;

 //@ ensures \old(_time) < _time;

 //@ ensures (* _time has been increased. *);

 public void advance();

}

/**

 * A logical clock implementation.

 * @author "Joseph Kiniry"

 */

public class LogicalClockImpl implements LogicalClock {

 /** The current logical time. */

 private long my_time = 0; //@ in _time;

 //@ private represents _time <- my_time;

 public long getLogicalTime() {

 return my_time;

 }

 public void advance() {

 my_time++;

 }

}

Informal EBON

Formal EBON

JML

Java

Figure 1: A diagrammatic representation of refinement from EBON to Java.

static_diagram CONCEPTS_AND_RELATIONS
component
deferred class LOGICAL_CLOCK
deferred class ALARM
effective class CLOCK persistent
effective class ALARM_CLOCK persistent

ALARM_CLOCK inherit CLOCK
ALARM_CLOCK inherit ALARM

end

Listing 1: An EBON static diagram describing the core concepts of the running example.

In this example, the concepts identified through domain analysis are alarm, alarm clock, and logical
clock. Their relationships are summarized in the EBON static diagram CONCEPTS AND RELATIONS in
Listing 1. Their definitions are elided in this example.

Each concept is summarized with an informal diagram. An informal diagram describes the concept
and its interfaces in terms of queries, commands, and constraints. Queries and commands are collectively
known as features.

For example, the logical clock must store a time value and, in EBON terminology, support a query to
determine the current time stored in the clock. A command is also necessary to monotonically advance
the time stored in the clock. Furthermore, a constraint states that the time stored in the clock is always
non-negative. Finally, the logical clock must also behave correctly while being used by multiple concurrent
clients.

class_chart LOGICAL_CLOCK
explanation
"A logical clock."

query
"What is the current time of this clock?"

command
"Advance the clock; update the clock’s time."

constraint
"The time must be non-negative.",
"Must support concurrent use by multiple clients."

end

Listing 2: An EBON class chart for LOGICAL CLOCK.

This interface and requirements are expressed using an EBON informal chart. Like most requirement
languages, informal EBON uses structured English to denote analysis concepts and requirements. The
EBON class chart shown in Listing 2 captures this information.

Danish Law Formally-generated
Test Harness

34Thursday, 1 December, 2011

Unit Testing from Specs
90% coverage

35Thursday, 1 December, 2011

Manual System Testing
from Law

(1) Ready to
Count

(2) No Seats Filled
Yet

(A) Calculate Quota

 (D) Calculate Number of
Votes to Transfer

 (4) Candidate Is
Deemed to be

Elected

 (6) Surplus
Available

(C) Calculate Surplus

(B) Find Highest Continuing Candidate With Quota

 (13) Last Seat Being
Filled (Single Winner IRV) (16) All Seats Filled

(10) Ready to Move
Ballots

(L) Move the Ballots

(12) Ready for Next
Round of Counting

(5) No Surplus Available

(J) Select Lowest Continuing
Candidates for Exclusion

(11) Candidate Excluded

(H) Calculate Transfers

(M) Check Remaining Seats

(15) One or More
Seats Remaining

(K) Count Continuing Candidates

(14) More Continuing Candidates Than
Remaining Seats

(18) Just One Continuing
Candidate For Each

Remaining Seat

(N) Declare Remaining
Candidates Elected

90% coverage with only a
dozen system tests

36Thursday, 1 December, 2011

System Testing from Law

(1) Ready to
Count

(2) No Seats Filled
Yet

(A) Calculate Quota

 (D) Calculate Number of
Votes to Transfer

 (4) Candidate Is
Deemed to be

Elected

 (6) Surplus
Available

(C) Calculate Surplus

(B) Find Highest Continuing Candidate With Quota

 (13) Last Seat Being
Filled (Single Winner IRV) (16) All Seats Filled

(10) Ready to Move
Ballots

(L) Move the Ballots

(12) Ready for Next
Round of Counting

(5) No Surplus Available

(J) Select Lowest Continuing
Candidates for Exclusion

(11) Candidate Excluded

(H) Calculate Transfers

(M) Check Remaining Seats

(15) One or More
Seats Remaining

(K) Count Continuing Candidates

(14) More Continuing Candidates Than
Remaining Seats

(18) Just One Continuing
Candidate For Each

Remaining Seat

(N) Declare Remaining
Candidates Elected

for every unique
election outcome

37Thursday, 1 December, 2011

A Formal Model
 of Voting

38Thursday, 1 December, 2011

A Parameterized
Formal Model

 of Several Voting
Schemes

39Thursday, 1 December, 2011

Alloy Model
40Thursday, 1 December, 2011

Law-Alloy Refinement
41Thursday, 1 December, 2011

Rigorous
System Test
Generation

42Thursday, 1 December, 2011

Core Concepts of
Elections

candidate

scenario

ballot

election

methodevent

43Thursday, 1 December, 2011

Core Concepts
• candidate

• votes (set of ballots)

• transfers (set of ballots)

• surplus (set of ballots)

• outcome (event)

• ballot

• assignees (set of candidates)

• preferences (sequence of candidates)

44Thursday, 1 December, 2011

Core Concepts

• scenario

• losers (set of candidates)

• winners (set of candidates)

• eliminated (set of candidates)

• threshold (integer minimum # of votes to
not be a sore loser)

• quota (integer minimum # of votes for an
STV or quota winner)

45Thursday, 1 December, 2011

Core Concepts
• event, exactly one of...

• Winner, QuotaWinner, CompromiseWinner,
TiedWinner, TiedLoser, Loser, TiedEarlyLoser,
EarlyLoser, TiedSoreLoser, SoreLoser

• election

• candidates (set of candidates)

• seats (integer)

• method (plurality or STV)

• ballots (integer # of unspoiled ballots)

46Thursday, 1 December, 2011

Generating Scenarios
• goal: generate and characterize every possible non-

isomorphism scenario

• election method, # candidates, # seats

• example outcomes

• WL or WL in two candidate plurality

• SSSLLLLLLW with 10 candidates and 1 seat in STV

• scenarios as lemmas

• “I bet there can’t be an election outcome like this!”

47Thursday, 1 December, 2011

Coupling Systems

• couple Alloy to jUnit

• generate and save system tests in generic
format for reuse across implementations

• perform code coverage analysis

• characterize system correctness

• identify suspicious parts of an implementation

48Thursday, 1 December, 2011

Ongoing Results

• generated all scenarios for up to 7 candidates in
PR-STV using several months of CPU time

• 99.9% code coverage

• early results after only two days of CPU time
detected two cases missed in scenario analysis

• zero bugs detected in verified counting system

49Thursday, 1 December, 2011

Summary of Current Affairs
• formally specified, validated, and verified election

tally software systems for US, NL, IE, and DK

• traceable refinement from law—interpreted as
concepts, features, and requirements—to
specifications, software, and proofs

• automatic verification using ESC/Java2

• automated unit tests with 97% coverage

• manual system tests with 97% coverage

• automated system tests with 100% coverage

• all research and development done in “spare time”

50Thursday, 1 December, 2011

Next Steps
• formal model of elections

• system model that includes people,
parties, bureaucrats, government

• trust-by-design

• software engineering in the face of an
adversarial customer (gov. and citizens)

• logic-based voting scheme

• couple LFs to implementation

51Thursday, 1 December, 2011

DemTech

Danish Council for Strategic Research
Programme Commission on

 Strategic Growth Technologies

Schürmann
Kiniry

Markussen

Fredericksberg
Aarhus

CopenhagenSiemens
Aion Assembly

Basin (ETHZ)
Ryan (Lux)

5 years
17M direct
32M total

52Thursday, 1 December, 2011

Thanks to
Collaborators

• KOA

• Dermot Cochran, Fintan Fairmichael,
Engelbert Hubbers, Alan Morkan, Martijn
Oostdijk

• Vótáil

• Dermot Cochran

• DiVS

• Dermot Cochran, Ólavur Kjølbro
53Thursday, 1 December, 2011

See DemTech.dk
for more information

54Thursday, 1 December, 2011

