
Chair of Software Engineering

Yu Pei, Yi Wei, Carlo A. Furia, 
Martin Nordio, Bertrand Meyer

1



Fault

Overview

2

Fault 
localization

Fix 
Synthesis

Fix 
Validation

Fixes

Program

Test Cases
(AutoTest)

AutoFix
Program

with
Contracts Valid

Fixes



• Dynamic analysis
– Difference between state invariants from passing and failing runs as 

the fault profile 

– State invariants in argument-less boolean queries

Model-based Fault Localization 

3

move_item (v: G) 
-- from TWO_WAY_SORTED_SET.
-- Move `v' to the left of cursor.

require v /= Void ; has (v)
local idx: INTEGER ; found: BOOLEAN
do

idx := index
from start until found or after loop

found := (v = item)
if not found then forth end

end
remove
go_i_th (idx)
put_left (v)

end

not is_empty
not before
not after
not isfirst

not is_empty
not before 
not after 
isfirst

not is_empty
not before
not after 
sorted

not is_empty
before
not after
not is_empty
before
not after
sorted

Invar. from failing

not is_empty
before
not after
…

Invar. from passing

not is_empty
not before
not after
…

…

0 1 count-1 count count+1



• Dynamic + Static Analysis
– State components as candidate fault causes: <exp, loc, val>

– Suspiciousness scores computed from

• frequency of appearance in passing/failing runs

• control dependence on the violation position

• syntactical similarity with the failing assertion

Code-based Fault Localization

4

1: move_item (v: G) 
2: -- Move `v' to the left of cursor.
3: require v /= Void ; has (v)
4: local idx: INTEGER ; found: BOOLEAN
5: do
6: idx := index
7: from start until found or after loop
8: found := (v = item)
9: if not found then forth end

10: end
11: remove
12: go_i_th (idx)  -- <valid_index(idx), L-12, False>
13: put_left (v)
14: end

…

0 1 count-1 count count+1

<index < idx, L-12, True> 
identified as a highly 
likely cause for fault. 



• Results of fault localization

– Model-based: a list of <loc, inv>

– Code-based: an ordered list of <exp, loc, val>

• Order defined by the suspiciousness scores

• Fixing actions: code necessary for correcting the faulty 
state

– Object behavioral model

– Enumeration

Fixing Actions

5



• Object behavioral model

– Suggests how routines change object states

– Contains a set of possible transitions

– Can be learned from passing test executions

Fixing Using Object Behavioral Model (OBM)

6

Fault profile: before

Fixing action: forth

not is_empty
before

not after
…

forth
not is_empty
not before
not after

…

move_item (v: G) 
-- from TWO_WAY_SORTED_SET.
-- Move `v' to the left of cursor.

require v /= Void ; has (v)
local idx: INTEGER ; found: BOOLEAN
do

idx := index
from start until found or after loop

found := (v = item)
if not found then forth end

end
remove
go_i_th (idx)
put_left (v)

end



• Identify values that could be modified to affect the state

• Enumerate all applicable operations on the values

– Fixing with state modification

– Fixing with expression substitution

7

Fixing by Enumeration

-- <index<idx, L-12, True>
go_i_th (idx) idx := idx – 1 

-- <index<idx, L-12, True>
go_i_th (idx) go_i_th (idx - 1)



• Fix schemas capture common fixing styles. 

8

Fix Synthesis

if fail_condition then
fixing_action

else
original_instruction

end

if fail_condition then
fixing_action

end
original_instruction

if before then
forth

end
put_left(v)

Instantiate
move_item (v: G) 

require v /= Void ; has (v)
local idx: INTEGER ; found: BOOLEAN
do

idx := index
from start until found or after loop

found := (v = item)
if not found then forth end

end
remove
go_i_th (idx)
put_left (v)

end



Validation and Ranking

9

• Validation

– Run the patched program against all passing and failing 
tests, requiring

• Passing tests still pass

• Failing tests now pass

• Ranking

– Static metrics favors

• simple textual changes

• changes close to the failing location

• changes involving less original statements

– Dynamic metric favors 

• behavioral preservation, i.e. passing tests should terminate 
in similar resulting states



Experimental Results

10

• Model-based fault localization + fixing actions from 
OBM

– 42 faults from EiffelBase & Gobo: fixed 16 (38%)

– In a small user study, 4 out of 6 of the selected fixes are 
the same as those from programmers

• Code-based fault localization + fixing actions by 
enumeration

– 64 faults from EiffelBase & Gobo: fixed 14 (22%) 

– 9 faults from a student project: fixed 5 (55%) 

Results considering only proper fixes.

Average fixing time is a few minutes per fault



Summary

• A fully automated approach to program fixing, which

– works with program with contracts,

– takes (passing and failing) test cases as inputs,

– exploits dynamic and static analysis techniques,

– validates candidate fixes through regression, and

– succeeds in proposing proper fixes to real program faults.

• AutoFix
http://se.inf.ethz.ch/research/autofix/

11

http://se.inf.ethz.ch/research/autofix/


Questions


