
Chair of Software Engineering 

Dynamic Contract Inference 

Nadia Polikarpova 

 

Software Verification 

19.10.2011 



Chair of Software Engineering 

Dynamic contract inference 

 Location invariant – a property that always holds at 
a given point in the program 

 

 

 Dynamic invariant inference – detecting location 
invariants from values observed during execution 

 Also called: invariant generation, contract inference, 
specification inference, assertion inference, ... 

 Pioneered by Daikon 
http://groups.csail.mit.edu/pag/daikon/ 
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... 
x := 0 
... x = 0 

http://groups.csail.mit.edu/pag/daikon/
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Overview 

 How does Daikon work? 

 Inferred invariants 

 Improving inferred invariants 

 Contract inference in Eiffel: CITADEL and AutoInfer 
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Instrumenter 

 Finds program points of interest 

 routine enter/exit, loop condition  

 Finds variables of interest at these program points 

 current object, formals, locals, return value, 
expressions composed of other variables 

 Modifies the source code so that every time a 
program point is executed, variable values are 
printed to the trace file 
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class BANK_ACCOUNT 
 ... 
 balance: INTEGER 
 
 deposit (amount: INTEGER) 
   do 
    trace.print (“BANK_ACCOUNT.deposit:::ENTER”) 
    trace.print (“amount ” + amount.out) 
    trace.print (“balance” + balance.out) 
    balance := balance + amount 
    trace.print (“BANK_ACCOUNT.deposit:::EXIT”) 
    trace.print (“amount ” + amount.out) 
    trace.print (“balance” + balance.out) 
   end  
end 

Instrumenter: example 7 
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Detector 

 Has a predefined set of invariant templates 

 At each program point instantiates the templates 
with appropriate variables 

 Checks invariants against program point samples 
(variable values in the trace) 

 Reports invariants that are not falsified (and satisfy 
other conditions) 
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Detector: example 

 Templates: x = const x >= const  x = y  ... 

 Program point: BANK_ACCOUNT.deposit:::ENTER 

 Variables: balance, amount: INTEGER 

 Invariants: 

 balance = const 

 balance >= const 

 amount = const 

 amount >= const 

 balance = amount 
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  Samples: 

balance 0 amount 10 

balance 10 amount 20 

balance 30 amount 1 

0 

0 

10 

10 1 
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Unary invariant templates 

 Constant 
x = const 

 Bounds  
x < const (<=, >, >=) 

 Nonzero  
x  /= 0 

 Modulus  
x = r mod m 

 No duplicates 
s has no duplicates 

 index and element  
s [i] = i (<, <=, >, >=) 
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Binary invariant templates 

 Comparisons  
x = y (<, <=, >, >=) 

 Linear binary  
ax + by = 0  

 Squared 
x = y^2 

 Divides  
x = 0 mod y  

 Zero track  
x = 0 implies y = 0 

 Member  
x in s  

 Reversed  
s1 = s2.reveresed 

 Subsequence and subset  
s1 is subsequence of s2  s1 is subset of s2    
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 Linear ternary 

ax + by + zc = 0   

 Binary function  

z = f (x,  y) 

where f = and, or, xor, min, max, gcd, pow 

13 Ternary invariant templates 
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 Annotates code with inferred invariants 

class BANK_ACCOUNT 
 ... 
 balance: INTEGER 
 
 deposit (amount: INTEGER) 
   require 
    balance >= 0 
    amount >= 1 
   do 
    balance := balance + amount 
   end  
end 

Annotator 15 

BANK_ACCOUNT.deposit:::ENTER 

    balance >= 0 

    amount >= 1 

... 
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Results depend on... 

 Source code 

 Invariant templates 

 Variables that instrumenter finds 

 potentially all expressions that can be evaluated 
at a program point 

 needs to choose interesting ones 

 Test suite 

 Fine tuning the detector 
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Dynamic inference is... 

 Not sound 

 Sound over the test suite, but not potential runs 

 Not complete 

 Restricted to the set of templates 

 Heuristics for eliminating irrelevant invariants 
might remove relevant ones 

 Even if it was, it reports properties of the code, not 
the developers intent 
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Classification 18 
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Quality measures 19 

 Correctness – percentage of correct 
inferred invariants (true code 
properties) 

 

 Relevance (precision) – percentage 
of relevant inferred invariants 

 

 Recall – percentage of true 
invariants that were inferred 
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Using inferred invariants 

 As a specification (after human inspection) 

 Strengthening and correcting human-written 
specifications 

 Inferring loop invariants that are difficult to 
construct manually 

 Finding bugs 

 Evaluating and improving test suites 
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Improving quality 

 Improving relevance 

 Statistical test 

 Redundant invariants 

 Comparability analysis 

 Improving recall 

 More templates and variables 

 Conditional invariants 
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Statistical test 

 Checking invariant 
x /= 0 

 Let samples of x be nonzero, distributed in [-5, 5] 

 With 3 samples:  

pby_chance = (1 - 1/11)3 ≈ 0.75 

 With 100 samples:  

pby_chance = (1 - 1/11)100 ≈ 0.00007 

 Each invariant calculates probability in its own way 

 Threshold is defined by the user (usually < 0.01) 
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Redundant invariants 

 ensure 
   x > 0 
   x /= 0 
   ... 

 Invariants that are implied by other invariants are 
not interesting 

 How to find them? 

 General-purpose theorem prover 

 Daikon has built-in hierarchy of invariants 
(invariants know their suppressors) 
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Comparability analysis 

 class BANK_ACCOUNT 
 ... 
 invariant 
   number > owner.birth_year 
 end 

 Using the same syntactic type (INTEGER) to 
represent multiple semantic types 

 Semantics types can be recovered by static analysis 

 Variables x and y are considered comparable if they 
appear in constructs like 

x = y    x := y    x > y    x + y    ... 
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It is easy: 

 add more invariant templates 

 add more variables of interest 

 

However that increases the search space and 

 either makes inference intractable 

 or decreases relevance 

 

Choose templates and variables in a smart way 

 e.g. at the entry to withdraw (amount: INTEGER) 
is_amount_available (amount) is a good choice but 
is_amount_available (5) is not 

 

 

25 Improving recall 
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Conditional invariants 

 Invariants of the form  

(P1 and P2 ... and Pm) implies Q  

are hard to infer with the basic technique:  

it has to try all combinations of Pi and Q 

 

 An efficient way: Decision Tree Learning 
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old after 

index = old index index = old index + 1 

True False 
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CITADEL 

 Contract Inference Tool Applying Daikon to 
Eiffel Language 

http://se.inf.ethz.ch/people/polikarpova/citadel.html 

 Infers only contracts expressible in Eiffel 

 no invariants over sequences 

 Uses zero-argument functions as variables 

 Eiffel functions are pure 

 user-supplied preconditions are used to check 
whether a function can be called 

 Infers loop invariants 
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Experiment 

 Comparing programmer-written contracts with 
inferred ones 

 Scope: 25 classes (89–1501 lines of code) 

 15 from industrial-grade libraries 

 4 from an application used in teaching CS at ETH 

 6 from student projects 

 Tests suite: 50 calls to every method, random 
inputs + partition testing 

 Contract clauses total: 

 programmer-written: 831 

 inferred: 9’349 
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Results 30 

Measure Description Value 

Correctness correct IC 
IC 

90% 

Relevance relevant IC 
IC 

64% 

Expressibility PC expressible in Daikon 
PC 

86% 

Recall inferred PC 
PC 

59% 

Strengthening 
factor 

PC + relevant IC 
PC 

5.1 

IC = Inferred contract Clauses 

PC = Programmer-written contract Clauses 
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DEMO 
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AutoInfer 
 

http://se.inf.ethz.ch/research/autoinfer 

 

 Does not use Daikon 

 Uses AutoTest to generate the test suite 

 Infers universally quantified expressions and 
implications 

 Uses functions with arguments as variables 

 Only infers postconditions of commands 
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Example: LIST.extend 
extend (v: G)  

  -- Add `v' to end. Do not move cursor. 

 ... 

 ensure 

  occurrences (v) = occurrences (v) + 1 

  count = old count + 1 

  i_th (old count + 1) = v 

  forall i . 1 <= i <= old count implies i_th (i) = old i_th (i) 

  old after implies index = old index + 1 

  not old after implies index = old index 

  last = v 

  forall o:G /= v . occurrences (o) = old occurrences (o) 

  forall o:G /=v . has (o) = old has (o) 
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