
Chair of Software Engineering

Dynamic Contract Inference

Nadia Polikarpova

Software Verification

19.10.2011

Chair of Software Engineering

Dynamic contract inference

 Location invariant – a property that always holds at
a given point in the program

 Dynamic invariant inference – detecting location
invariants from values observed during execution

 Also called: invariant generation, contract inference,
specification inference, assertion inference, ...

 Pioneered by Daikon
http://groups.csail.mit.edu/pag/daikon/

2

...
x := 0
... x = 0

http://groups.csail.mit.edu/pag/daikon/

Chair of Software Engineering

Overview

 How does Daikon work?

 Inferred invariants

 Improving inferred invariants

 Contract inference in Eiffel: CITADEL and AutoInfer

3

Chair of Software Engineering

Daikon architecture 4

Instrumenter Execution

Detector
Postprocessor

(printer,
annotator, etc.)

Source
code

Instrumented
code

Declarations Trace

Test suite

Inferred
invariants

Annotated code

Formatted
invariants

Language-dependent

Chair of Software Engineering

Daikon architecture 5

Instrumenter Execution

Detector
Postprocessor

(printer,
annotator, etc.)

Source
code

Instrumented
code

Declarations Trace

Test suite

Inferred
invariants

Annotated code

Formatted
invariants

Language-dependent

Chair of Software Engineering

Instrumenter

 Finds program points of interest

 routine enter/exit, loop condition

 Finds variables of interest at these program points

 current object, formals, locals, return value,
expressions composed of other variables

 Modifies the source code so that every time a
program point is executed, variable values are
printed to the trace file

6

Chair of Software Engineering

class BANK_ACCOUNT
 ...
 balance: INTEGER

 deposit (amount: INTEGER)
 do
 trace.print (“BANK_ACCOUNT.deposit:::ENTER”)
 trace.print (“amount ” + amount.out)
 trace.print (“balance” + balance.out)
 balance := balance + amount
 trace.print (“BANK_ACCOUNT.deposit:::EXIT”)
 trace.print (“amount ” + amount.out)
 trace.print (“balance” + balance.out)
 end
end

Instrumenter: example 7

Chair of Software Engineering

Daikon architecture 8

Instrumenter Execution

Detector
Postprocessor

(printer,
annotator, etc.)

Source
code

Instrumented
code

Declarations Trace

Test suite

Inferred
invariants

Annotated code

Formatted
invariants

Language-dependent

Chair of Software Engineering

Detector

 Has a predefined set of invariant templates

 At each program point instantiates the templates
with appropriate variables

 Checks invariants against program point samples
(variable values in the trace)

 Reports invariants that are not falsified (and satisfy
other conditions)

9

Chair of Software Engineering

Detector: example

 Templates: x = const x >= const x = y ...

 Program point: BANK_ACCOUNT.deposit:::ENTER

 Variables: balance, amount: INTEGER

 Invariants:

 balance = const

 balance >= const

 amount = const

 amount >= const

 balance = amount

10

 Samples:

balance 0 amount 10

balance 10 amount 20

balance 30 amount 1

0

0

10

10 1

Chair of Software Engineering

Unary invariant templates

 Constant
x = const

 Bounds
x < const (<=, >, >=)

 Nonzero
x /= 0

 Modulus
x = r mod m

 No duplicates
s has no duplicates

 index and element
s [i] = i (<, <=, >, >=)

11

Chair of Software Engineering

Binary invariant templates

 Comparisons
x = y (<, <=, >, >=)

 Linear binary
ax + by = 0

 Squared
x = y^2

 Divides
x = 0 mod y

 Zero track
x = 0 implies y = 0

 Member
x in s

 Reversed
s1 = s2.reveresed

 Subsequence and subset
s1 is subsequence of s2 s1 is subset of s2

12

Chair of Software Engineering

 Linear ternary

ax + by + zc = 0

 Binary function

z = f (x, y)

where f = and, or, xor, min, max, gcd, pow

13 Ternary invariant templates

Chair of Software Engineering

Daikon architecture 14

Instrumenter Execution

Detector
Postprocessor

(printer,
annotator, etc.)

Source
code

Instrumented
code

Declarations Trace

Test suite

Inferred
invariants

Annotated code

Formatted
invariants

Language-dependent

Chair of Software Engineering

 Annotates code with inferred invariants

class BANK_ACCOUNT
 ...
 balance: INTEGER

 deposit (amount: INTEGER)
 require
 balance >= 0
 amount >= 1
 do
 balance := balance + amount
 end
end

Annotator 15

BANK_ACCOUNT.deposit:::ENTER

 balance >= 0

 amount >= 1

...

Chair of Software Engineering

Results depend on...

 Source code

 Invariant templates

 Variables that instrumenter finds

 potentially all expressions that can be evaluated
at a program point

 needs to choose interesting ones

 Test suite

 Fine tuning the detector

16

Chair of Software Engineering

Dynamic inference is...

 Not sound

 Sound over the test suite, but not potential runs

 Not complete

 Restricted to the set of templates

 Heuristics for eliminating irrelevant invariants
might remove relevant ones

 Even if it was, it reports properties of the code, not
the developers intent

17

Chair of Software Engineering

Classification 18

uninteresting

incorrect

not inferred

relevant inferred
invariants

inferred
invariants

perfect
specification

Chair of Software Engineering

Quality measures 19

 Correctness – percentage of correct
inferred invariants (true code
properties)

 Relevance (precision) – percentage
of relevant inferred invariants

 Recall – percentage of true
invariants that were inferred

Chair of Software Engineering

Using inferred invariants

 As a specification (after human inspection)

 Strengthening and correcting human-written
specifications

 Inferring loop invariants that are difficult to
construct manually

 Finding bugs

 Evaluating and improving test suites

20

Chair of Software Engineering

Improving quality

 Improving relevance

 Statistical test

 Redundant invariants

 Comparability analysis

 Improving recall

 More templates and variables

 Conditional invariants

21

Chair of Software Engineering

Statistical test

 Checking invariant
x /= 0

 Let samples of x be nonzero, distributed in [-5, 5]

 With 3 samples:

pby_chance = (1 - 1/11)3 ≈ 0.75

 With 100 samples:

pby_chance = (1 - 1/11)100 ≈ 0.00007

 Each invariant calculates probability in its own way

 Threshold is defined by the user (usually < 0.01)

22

Chair of Software Engineering

Redundant invariants

 ensure
 x > 0
 x /= 0
 ...

 Invariants that are implied by other invariants are
not interesting

 How to find them?

 General-purpose theorem prover

 Daikon has built-in hierarchy of invariants
(invariants know their suppressors)

23

Chair of Software Engineering

Comparability analysis

 class BANK_ACCOUNT
 ...
 invariant
 number > owner.birth_year
 end

 Using the same syntactic type (INTEGER) to
represent multiple semantic types

 Semantics types can be recovered by static analysis

 Variables x and y are considered comparable if they
appear in constructs like

x = y x := y x > y x + y ...

24

Chair of Software Engineering

It is easy:

 add more invariant templates

 add more variables of interest

However that increases the search space and

 either makes inference intractable

 or decreases relevance

Choose templates and variables in a smart way

 e.g. at the entry to withdraw (amount: INTEGER)
is_amount_available (amount) is a good choice but
is_amount_available (5) is not

25 Improving recall

Chair of Software Engineering

Conditional invariants

 Invariants of the form

(P1 and P2 ... and Pm) implies Q

are hard to infer with the basic technique:

it has to try all combinations of Pi and Q

 An efficient way: Decision Tree Learning

26

old after

index = old index index = old index + 1

True False

Chair of Software Engineering

CITADEL

 Contract Inference Tool Applying Daikon to
Eiffel Language

http://se.inf.ethz.ch/people/polikarpova/citadel.html

 Infers only contracts expressible in Eiffel

 no invariants over sequences

 Uses zero-argument functions as variables

 Eiffel functions are pure

 user-supplied preconditions are used to check
whether a function can be called

 Infers loop invariants

27

http://se.inf.ethz.ch/people/polikarpova/citadel.html

Chair of Software Engineering

Experiment

 Comparing programmer-written contracts with
inferred ones

 Scope: 25 classes (89–1501 lines of code)

 15 from industrial-grade libraries

 4 from an application used in teaching CS at ETH

 6 from student projects

 Tests suite: 50 calls to every method, random
inputs + partition testing

 Contract clauses total:

 programmer-written: 831

 inferred: 9’349

28

Chair of Software Engineering

29 Classification

Programmer-written Inferred

n
o
t

e
x
p
re

s
s
ib

le

n
o
t

in
fe

rr
e
d

im
p
li
e
d
 b

y
 i
n
fe

rr
e
d

both

im
p
lie

d
 b

y
 p

ro
g
ra

m
m

e
r-w

ritte
n

n
e
w

u
n
in

te
re

s
tin

g

in
c
o
rre

c
t

Chair of Software Engineering

Results 30

Measure Description Value

Correctness correct IC
IC

90%

Relevance relevant IC
IC

64%

Expressibility PC expressible in Daikon
PC

86%

Recall inferred PC
PC

59%

Strengthening
factor

PC + relevant IC
PC

5.1

IC = Inferred contract Clauses

PC = Programmer-written contract Clauses

Chair of Software Engineering

DEMO

Chair of Software Engineering

AutoInfer

http://se.inf.ethz.ch/research/autoinfer

 Does not use Daikon

 Uses AutoTest to generate the test suite

 Infers universally quantified expressions and
implications

 Uses functions with arguments as variables

 Only infers postconditions of commands

32

http://se.inf.ethz.ch/research/autoinfer
http://se.inf.ethz.ch/research/autoinfer
http://se.inf.ethz.ch/research/autoinfer

Chair of Software Engineering

Example: LIST.extend
extend (v: G)

 -- Add `v' to end. Do not move cursor.

 ...

 ensure

 occurrences (v) = occurrences (v) + 1

 count = old count + 1

 i_th (old count + 1) = v

 forall i . 1 <= i <= old count implies i_th (i) = old i_th (i)

 old after implies index = old index + 1

 not old after implies index = old index

 last = v

 forall o:G /= v . occurrences (o) = old occurrences (o)

 forall o:G /=v . has (o) = old has (o)

33

