Dynamic Contract Inference

Nadia Polikarpova

Software Verification
19.10.2011

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Chair of Software Engineering it Tederalinaeute af ochmaley Zurkeh

(<) Dynamic contract inference :

Location invariant — a property that always holds at
a given point in the program

).(":=004[x =0]

= Dynamic invariant inference — detecting location
invariants from values observed during execution

= Also called: invariant generation, contract inference,
specification inference, assertion inference, ...

= Pioneered by Daikon

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Chair of Software Engineering it Tederalinaeute af ochmaley Zurkeh

http://groups.csail.mit.edu/pag/daikon/

@ Overview 3

How does Daikon work?

Inferred invariants

Improving inferred invariants

Contract inference in Eiffel: CITADEL and Autolnfer

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Chair of Software Engineering St Tederat it wuie f Technalogy Zurkch

(-) Daikon architecture

Annotated code

Inferred
invariants

Test suite

Source Instrumented / \
code code
Instrumenter > Execution
T T —_—
Declarations Trace
— \
Formatted
invariants Postprocessor
- (printer, Detector
[annotator, etc.)

Chair of Software Engineering

Language-dependent

(-) Daikon architecture

Annotated code

Inferred
invariants

Test suite

Source Instrumented / \
code code
Instrumenter > Execution
T T —_—
Declarations Trace
— \
Formatted
invariants Postprocessor
- (printer, Detector
[annotator, etc.)

Chair of Software Engineering

Language-dependent

(-) Instrumenter 6

*» Finds program points of interest
= routine enter/exit, loop condition
= Finds variables of interest at these program points

= current object, formals, locals, return value,
expressions composed of other variables

= Modifies the source code so that every time a
program point is executed, variable values are
printed to the trace file

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Chair of Software Engineering it Tederalinaeute af ochmaley Zurkeh

() Instrumenter: example 7

class BANK ACCOUNT
balance: INTEGER
deposit (amount: INTEGER)
do

balance := balance + amount

O
end

end

Eikdgenbusische Technlcche Hochuchule Rk

Chair of Software Engineering v Feders o e of Techoetoy Tolch

(-) Daikon architecture

Annotated code

Inferred
invariants

Test suite

Source Instrumented / \
code code
Instrumenter > Execution
T T —_—
Declarations Trace
— \
Formatted
invariants Postprocessor
- (printer, Detector
[annotator, etc.)

Chair of Software Engineering

Language-dependent

(1) Detector 9

= Has a predefined set of invariant templates

= At each program point instantiates the templates
with appropriate variables

= Checks invariants against program point samples
(variable values in the trace)

= Reports invariants that are not falsified (and satisfy
other conditions)

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Chair of Software Engineering it Tederalinaeute af ochmaley Zurkeh

() Detector: example 1

Templates: x = const x >=const Xx=y

Program point: BANK_ACCOUNT.deposit:::ENTER

Variables: balance, amount: INTEGER

= Invariants: = Samples:

DB B Em e balance 0 amount 10
balance >= 0 balance 10 amount 20

AL O i e balance 30 amount 1
amount >= 1

—BalaREe=—==arTTotITIL

Eikdgenbusische Technlcche Hochuchule Rk

Chair of Software Engineering v Feders o e of Techoetoy Tolch

() Unary invariant templates =

= Constant
X = const
= Bounds
x < const (<=, >, >=)
= Nonzero
x /=0
= Modulus

X =rmodm

No duplicates
s has no duplicates

index and element
slil=i(<, <=,>,>=)

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Chair of Software Engineering it Tederalinaeute af ochmaley Zurkeh

() Binary invariant templates =

= Comparisons
X = y(<l <=I >I >=)
= Linear binary

ax + by =0
= Squared
X = yN2
= Divides
x =0mody

= Zero track
x =0impliesy =0
= Member
xXins
= Reversed
sl = sZ.reveresed
= Subsequence and subset
s1 is subsequence of s2 sl is subset of s2?

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Chair of Software Engineering it Tederalinaeute af ochmaley Zurkeh

() Ternary invariant templates

= Linearternary
ax +by+zc=0
= Binary function
z=1(x, y)

where f = and, or, xor, min, max, gcd, pow

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Chair of Software Engineering it Tederalinaeute af ochmaley Zurkeh

(-) Daikon architecture

14

Annotated code

Inferred
invariants

Test suite

Source Instrumented / \
code code
Instrumenter > Execution
N L =~
Declarations Trace
—— \
Formatted
invariants Postprocessor
- (printer, Detector
[annotator, etc.)

Chair of Software Engineering

Language-dependent

() Annotator 15

= Annotates code with inferred invariants

class BANK_ACCOUNT BANK_ACCOUNT.deposit:: :ENTER
B balance >= 0
balance: INTEGER amount >= 1

deposit (amount: INTEGER)

do
balance := balance + amount
end
end

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Chair of Software Engineering it Tederalinaeute af ochmaley Zurkeh

() Results depend on... 1

Source code

Invariant templates

Variables that instrumenter finds

= potentially all expressions that can be evaluated
at a program point

= needs to choose interesting ones

Test suite

Fine tuning the detector

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Chair of Software Engineering St Tederat it wuie f Technalogy Zurkch

(<) Dynamic inference is... 17

= Not sound

= Sound over the test suite, but not potential runs
= Not complete

= Restricted to the set of templates

= Heuristics for eliminating irrelevant invariants
might remove relevant ones

= Even if it was, it reports properties of the code, not
the developers intent

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Chair of Software Engineering it Tederalinaeute af ochmaley Zurkeh

() Classification 1
{ inferred :
invariants Incorrect
perfect
[specification]

uninteresting

relevant inferred
iInvariants

not inferred

Chair of Software Engineering

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

() Quality measures 1

= Correctness — percentage of correct
inferred invariants (true code
properties)

= Relevance (precision) — percentage
of relevant inferred invariants

= Recall - percentage of true
invariants that were inferred

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Chair of Software Engineering St Tederat it wuie f Technalogy Zurkch

() Using inferred invariants =

= As a specification (after human inspection)

= Strengthening and correcting human-written
specifications

= Inferring loop invariants that are difficult to
construct manually

= Finding bugs

= Evaluating and improving test suites

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Chair of Software Engineering it Tederalinaeute af ochmaley Zurkeh

(9 Improving quality 21

= Improving relevance
= Statistical test
= Redundant invariants
= Comparability analysis
= Improving recall
= More templates and variables

= Conditional invariants

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Chair of Software Engineering it Tederalinaeute af ochmaley Zurkeh

(1) Statistical test 22

Checking invariant
x /=0

= | et samples of x be nonzero, distributed in [-5, 5]

= With 3 samples:
M,
pby chance — (1 - 1/11)3 ~ 0.75 Sb/?
= With 100 samples: Jy

Sp,/
Pby chance = (1 - 1/11)100 = 0.00007 "eq

Each invariant calculates probability in its own way

Threshold is defined by the user (usually < 0.01)

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Chair of Software Engineering St Tederat it wuie f Technalogy Zurkch

() Redundant invariants 23

ensure
x>0

e ="0"

= Invariants that are implied by other invariants are
not interesting

= How to find them?
= General-purpose theorem prover

= Daikon has built-in hierarchy of invariants
(invariants know their suppressors)

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Chair of Software Engineering it Tederalinaeute af ochmaley Zurkeh

() Comparability analysis 24

class BANK ACCOUNT

o y

invariant ‘//7,}7/2/)
number > owner.birth_year le N G

end “/'/79

= Using the same syntactic type (INTEGER) to
represent multiple semantic types

= Semantics types can be recovered by static analysis

= Variables x and y are considered comparable if they
appear in constructs like

X=y X:=y X>y X+Yy

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Chair of Software Engineering it Tederalinaeute af ochmaley Zurkeh

(<) Improving recall 25

It is easy:
= add more invariant templates
= add more variables of interest

However that increases the search space and
» either makes inference intractable
= Or decreases relevance

Choose templates and variables in a smart way

e.g. at the entry to withdraw (amount: INTEGER)
Is_amount_available (amount) is a good choice but
Is_amount_available (5) is not

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Chair of Software Engineering it Tederalinaeute af ochmaley Zurkeh

(<) Conditional invariants 26

= Invariants of the form
(P, and P,... and P,) implies Q
are hard to infer with the basic technique:
it has to try all combinations of P, and Q

= An efficient way: Decision Tree Learning

old after
index = old index index = old index + 1

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Chair of Software Engineering it Tederalinaeute af ochmaley Zurkeh

() CITADEL 27

» Contract Inference Tool Applying Daikon to
2 Eiffel Language

= Infers only contracts expressible in Eiffel
* NO invariants over sequences

= Uses zero-argument functions as variables
= Eiffel functions are pure

= user-supplied preconditions are used to check
whether a function can be called

= Infers loop invariants

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Chair of Software Engineering St Tederat it wuie f Technalogy Zurkch

http://se.inf.ethz.ch/people/polikarpova/citadel.html

() Experiment

28

Comparing programmer-written contracts with

inferred ones

Scope: 25 classes (89-1501
= 15 from industrial-grade i
= 4 from an application usec
= 6 from student projects

Tests suite: 50 calls to every
iInputs + partition testing

Contract clauses total:
= programmer-written: 831
» inferred: 97349

Chair of Software Engineering

ines of code)
oraries

in teaching CS at ETH

method, random

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

(-) Classification

29

Programmer-written Inferred

o
w Y
o §e. 3]
7 @ £
: : s
C L >
a c e
> = o
- o 0]
c =
2 a
c
£

usplUm-Jawwelboid Agq paljdwi

Chair of Software Engineering

Bulisaltaquiun

1094400U|

ETH

Eikdgenbusische Technlcche Hochuchule Rk
Swiss Federal intitute of Technolegy Zurkch

(-) Results 50

Measure |Description |Value |

Correctness correct IC 90%
IC

Relevance relevant IC 64%
IC

Expressibility PC expressible in Daikon 86%
PC

Recall inferred PC 59%
PC

Strengthening PC + relevant IC 5.1

factor PC

IC = Inferred contract Clauses
PC = Programmer-written contract Clauses

Eikdgenbusische Technlcche Hochuchule Rk

Chair of Software Engineering v Feders o e of Techoetoy Tolch

DEMO

ETH

Eikdgenbusische Technlcche Hochuchule Rk

Chair of Software Engineering it Tederalinaeute af ochmaley Zurkeh

(<) Autolnfer 32

= Does not use Daikon
= Uses AutoTest to generate the test suite

= Infers universally quantified expressions and
implications

= Uses functions with arguments as variables

= Only infers postconditions of commands

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Chair of Software Engineering it Tederalinaeute af ochmaley Zurkeh

http://se.inf.ethz.ch/research/autoinfer
http://se.inf.ethz.ch/research/autoinfer
http://se.inf.ethz.ch/research/autoinfer

() Example: LIST.extend 53

extend (v: G)
-- Add V' to end. Do not move cursor.

ensure
occurrences (v) = occurrences (v) + 1
count = old count + 1
| _th (old count + 1) = v
foralli. 1 <=i <= old count implies i _th (i) = old /_th (i)
old after implies index = old index + 1
not old after implies index = old index
last = v
forall 0:G /= v . occurrences (0) = old occurrences (0)
forall 0:G /=v . has (0) = old has (0)

Eikdgenbusische Technlcche Hochuchule Rk

Chair of Software Engineering v Feders o e of Techoetoy Tolch

