
Automated contract-based testing

and dynamic contract inference

Yi Wei

Chair of Software Engineering

ETH Zürich

and dynamic contract inference

Automated unit testing

Test case execution Result validationInput generation

2

Preconditions Postconditions

Contracts

Input filter

Design by Contract

put (v: G; i: INTEGER)

-- From DS_ARRAYED_LIST
-- Add `v' at `i'-th position.

require

extendible: extendible (1)

valid_index: 1 <= i and i <= (count + 1)

Ouput validator

-- Implementation
ensure

one_more: count = old count + 1
inserted: item (i) = v

3

Contract-based random testing
Random input generation:

• Primitive values: random selection

• Objects: constructor calls + other (state-changing) methods

4

Precondition

Routine

Postcondition

Input filter

Oracle

Random testing strategy

Select next routine to test

Select objects randomly

create {LINKED_LIST [INTEGER] } v1.make

v2 := 1

v3 := 125

v1.wipe_out

v1.extend (v2)

5

Sample test cases

Invoke routine

v4 := v1.has (v3)

v5 := v1.count

v1
v2

v3

v4

v5

Object pool

Test outcome for the feature under test

• Execution ends normally: a passing test case

• Execution fails with precondition violation: an invalid

test case

• Execution fails with postcondition violation or any

failure inside feature body: a detected faultfailure inside feature body: a detected fault

6

Effectiveness of contract-based random testing

Intuition:

random testing is a poor strategy.

Experimental results:

• Random testing is effective• Random testing is effective

• Best: random+ testing (random + limit values)

• Relative number of found faults: predictable

• Actual found faults: unpredictable

7

Number of faults detected over time

Inversely proportional to elapsed time:

15

20

25

N
u

m
b

e
r

o
f

b
u

g
s
 f

o
u

n
d

STRING

b
t

a
tf +=)(

8

0

5

10

15

0 10 20 30

Timeout (minutes)

N
u

m
b

e
r

o
f

b
u

g
s
 f

o
u

n
d

STRING

PRIMES

HASH_TABLE

Number of detected faults

9

The problem of missing contracts

Contracts are good for defining semantics of programs.

But most programs are not equipped with contracts or

they only contain very partial contracts.

Dynamic contract inference

Infers contracts (invariants) from program execution

traces

10

Dynamic contract inference

LINKED_LIST.extend (v: ANY) -- Add v to end.

TC1: old count = 4, count = 5

TC2: old count = 3, count = 4

TC3: old count = 7, count = 8

TC1: not old has (v), has (v)

TC2: old has (v), has (v)

TC3: not old has (v), has (v)

11

TC3: old count = 7, count = 8

TC4: old count = 0, count = 1

count = old count + 1

TC3: not old has (v), has (v)

TC4: old has (v), has (v)

has (v)

Contract inference for Eiffel? Really?

class LINKED_LIST

extend (v: ANY)

-- Add v to end.

ensure

occurrences (v) = old (occurrences (v)) + 1

i_th (i : INTEGER): ANY

When written contracts
are partial, we would like more.

When written contracts are “Ask not what your contract can do for you,i_th (i : INTEGER): ANY

-- Item at i-th position

require

i >= 1 and i <= count

index: INTEGER

-- Index of current position

12

exploit them.

When written contracts are
complete, we would like to
exploit them.

s wr

“Ask not what your contract can do for you,

ask what you can do with your contract. ”

Our tool inferred

The programmer wrote

AutoInfer: inferring more contracts

extend (v: ANY)

-- Add v to end.
ensure

post1: occurrences (v) = old (occurrences (v)) + 1

post2: forall o . o /= v implies occurrences (o) = old occurrences (o)

sss wwwr vvv

post2: forall o . o /= v implies occurrences (o) = old occurrences (o)
post3: forall o . o /= v implies has (o) = old has (o)

post4: forall i . i >= 1 and i <= old count implies i_th (i) = old i_th (i)
post5: i_th (old count + 1) = v
post6: old after implies index = old index + 1
post7: not old after implies index = old index
post8: count = old count + 1

post9: last = v

13

AutoInfer: overview

Test

suite

Change

profile

QuantificationsQuantifications

∀∀∀∀

ImplicationsImplications

Inferred

contracts

Basic templates Basic templates

=

Class
AutoTest

14

Implications

→→→→

Making

observations

Generalizing

observations

Change profile

Consists of expression evaluations for each test case:

• Expressions constructed from class interface

• Evaluations in both pre and post states

Pre-state of test case 1
list.count = 1
list.has (v) = False
.

Pre-state of test case 2
list.count = 7
list.has (v) = True
.

15

list.extend (v)

list.count = 1
list.has (v) = False
list.occurrences (v) = 0

Post-state of test case 1
list.count = 2
list.has (v) = True
list.occurrences (v) = 1

list.count = 7
list.has (v) = True
list.occurrences (v) = 3

Post-state of test case 2
list.count = 8
list.has (v) = True
list.occurrences (v) = 4

2. Templates based on sequences

1. Templates based on method signatures

Complementary techniques
extend (v: ANY)

ensure

post2: forall o . o /= v implies occurrences (o) = old occurrences (o)

post3: forall o . o /= v implies has (o) = old has (o)

post4: forall i . i >= 1 and i <= old count implies i_th (i) = old i_th (i)

3. Decision tree learning

post4: forall i . i >= 1 and i <= old count implies i_th (i) = old i_th (i)

post5: i_th (old count + 1) = v

post6: old after implies index = old index + 1

post7: not old after implies index = old index

post8: count = old count + 1
post9: last = v

16

2. Templates based on sequences2. Templates based on sequences

1. Templates based on method signatures

Technique 1: signature based templates

extend (v: ANY)

ensure

post2: forall o . o /= v implies occurrences (o) = old occurrences (o)

post3: forall o . o /= v implies has (o) = old has (o)

post4: forall i . i >= 1 and i <= old count implies i_th (i)=old i_th (i)

3. Decision tree learning3. Decision tree learning

post4: forall i . i >= 1 and i <= old count implies i_th (i)=old i_th (i)

post5: i_th (old count + 1) = v

post6: old after implies index = old index + 1

post7: not old after implies index = old index

post8: count = old count + 1
post9: last = v

17

1. Templates based on method signatures

Methods with similar signature
extend (v: ANY)

ensure

post2: forall o . o /= v implies occurrences (o) = old occurrences (o)

post3: forall o . o /= v implies has (o) = old has (o)

Queries available in the same class:
Quantifications based on

argument types
Queries available in the same class:

occurrences (v: ANY): INTEGER

-- Number of times v appears.

has (v: ANY): BOOLEAN

-- Does current list include v?

18

argument types

How to evaluate forall o . p (o)
efficiently?

The ones you don’t know, you don’t care

Only consider object o in forall o . p (o) if it is known to

the inference tool.

In a test case for: list.extend (v) :
2 to 100 relevant objects in a test
case, evaluated in a short time

19

LINKABLE objects
unseen to AutoInfer

s wrlist v

2. Templates based on sequences

1. Templates based on feature signatures1. Templates based on feature signatures

Technique 2: templates based on sequences

extend (v: ANY)

ensure

post2: forall o . o /= v implies occurrences (o) = old occurrences (o)

post3: forall o . o /= v implies has (o) = old has (o)

post4: forall i . i >= 1 and i <= old count implies i_th (i)=old i_th (i)

3. Decision tree learning3. Decision tree learning

post4: forall i . i >= 1 and i <= old count implies i_th (i)=old i_th (i)

post5: i_th (old count + 1) = v

post6: old after implies index = old index + 1
post7: not old after implies index = old index

post8: count = old count + 1
post9: last = v

20

2. Templates based on sequences

Templates based on sequences

extend (v: ANY)
ensure

post4: forall i . i >= 1 and i <= old count implies i_th (i)=old i_th (i)
post5: i_th (old count + 1) = v

1. Full range of valid

Query in the same class:

i_th (i : INTEGER): ANY
require

i >= 1 and i <= count

21

1. Full range of valid

integers as indexes

2. Indexes have an order

i_th (i) provides a façade
to extract an element
sequence

Translating sequence-based contracts

For extend (v):

translates into:

seq = (old seq) ++ [v]

s wr v

22

post4: forall i . i >= 1 and i <= old count implies i_th (i) = old i_th (i)

post5: i_th (old count + 1) = v

2. Templates based on sequences2. Templates based on sequences

1. Templates based on feature signatures1. Templates based on feature signatures

Three inference techniques

extend (v: ANY)

ensure

post2: forall o . o /= v implies occurrences (o) = old occurrences (o)

post3: forall o . o /= v implies has (o) = old has (o)

post4: forall i . i >= 1 and i <= old count implies i_th (i)=old i_th (i)

3. Decision tree learning

post4: forall i . i >= 1 and i <= old count implies i_th (i)=old i_th (i)

post5: i_th (old count + 1) = v

post6: old after implies index = old index + 1
post7: not old after implies index = old index

post8: count = old count + 1
post9: last = v

23

Technique 3: using decision tree to infer implications

extend (v):

If cursor is before or inside the list, index stays.

If cursor is after the list, index is increased by 1 to

s vr w

If cursor is after the list, index is increased by 1 to

make sure the cursor is still after the list.

24

s vr w

The problem is to find The problem is to find
suitable antecedents out
of many candidates

Decision trees to infer implications

Decision tree learning

• Works backward, from effects to possible causes

• No need to specify antecedents a priori

In the extend example:

• index - old index evaluates to either 0 or 1

• A decision tree tells in which cases the value is 0 and
in which cases the value is 1

25

Building decision trees

Use expressions in the change profile to build the tree:

old after

index = old index index = old index + 1

TrueFalse

This tree translates into:

26

post6: (old after) implies index = old index + 1

post7: (not old after) implies index = old index

AutoInfer: results

Test

suite

Change

profile

QuantificationsQuantifications

∀∀∀∀

ImplicationsImplications

→→→→

Inferred

contracts

Basic templates Basic templates

=

Class
AutoTest

Results:

94% of inferred postconditions are sound

75% of modifier methods with complete postconditions

But only 50% of inferred preconditions are sound

27

→→→→

Problem with dynamic contract inference

Inferred contracts are generalized from program

execution traces. Those traces are usually partial. So

the inferred contracts may be unsound, especially for

preconditions.

.SET.merge (other: SET)

require

inferred: Current.disjoint (other)

28

• Reflects that all the generated tests
invoke merge with disjointed sets

• Test generation should be improved

Generating tests to violated inferred invariants

SET.merge (other: SET)
require

p: Current.disjoint (other)

• Inferred precondition p summarizes already covered

state space

• They also suggests where the test generation should • They also suggests where the test generation should

explore – the uncovered part, defined by not p

29

Potential benefits:

• A way to detect whether inferred contracts are unsound

• A way to force test generation to go into new state region

Stateful testing: generating invariant-violating tests

For each of the inferred precondition p for a routine,

try to generate tests such that p does not hold on entry

point of that routine:

SET.merge (other: SET)
require

p: Current.disjoint (other)

Keep track of what objects Keep track of what objects
are generated during testing

p: Current.disjoint (other)

• If there exists s1 and s2 such that not s1.disjoint(s2), use them
directly.

• Otherwise, try to construct objects satisfying not p:
s1.put (v); s2.put (v); s1.merge (s2)

30

Analyze the behavior of

so far

Analyze the behavior of
routines that are executed
so far

Stateful testing: results

Drives testing to unexplored state space, hence more

likely to detect new faults

Results: (for 13 data structure classes)

• Improved the soundness of inferred contracts (pre

and postconditions) from 60% to over 99%and postconditions) from 60% to over 99%

• Detected 70% new faults in 7% of the time

31

Conclusions

• AutoTest: Contract-based random testing
generates inputs randomly

uses preconditions as input filter

uses postconditions as output validator

• AutoInfer: Dynamic contract inference
generalizes observations from program executions

is able to infer quantifications and implicationsis able to infer quantifications and implications

inferred contracts can be unsound

• Stateful Testing: generate invariant-violating tests
uses inferred contracts as guidance

forces testing to go into unexplored state space

identifies (most of) unsoundly inferred contracts

detects new faults quickly

32

