

Chair of Software
Engineering

Software Verification
ETH Zurich, September-December 2011

Proof-Carrying Code

&
Proof-Transforming Compilation

Chair of Software
Engineering

Overview

•  Proof-Carrying Code

•  Proof-Transforming Compilation
Ø Semantics for Java and Eiffel
Ø A Hoare-style logic for Bytecode
Ø Proof Translation

Chair of Software
Engineering

Mobile Code

3

How to verify mobile code?

Chair of Software
Engineering

4

Proof-Carrying Code

Lecture from Peter Lee,
2003, University of Oregon

code
proof

Chair of Software
Engineering

Code Producer Code Consumer

Proof-Carrying Code

Annotations

Source
Prog

Proof
Generator

Proof
Checker

Certifying
compiler

VC
Generator

VC

code

Proof

VC

CPU

VC
Generator

Chair of Software
Engineering

6	

What do we gain?

The process of checking the proof is fast and

automatic
There is no loss of performance in the bytecode

program
The overhead of developing the proof is done

once and for all by the code producer
The code consumer does not need to trust the

code producer

Chair of Software
Engineering

7	

Limitations

Proofs are big
Good for safety but not yet termination
Certifying compilers can generate proof

automatically only for a restricted set of
properties

In Lee and Necula’s implementation, they
consider machine code… portability?

Chair of Software
Engineering

Verification Process based on
Proof-Transforming Compilation (PTC)

8

PTC

Prover

Proof Checker

Source prog.
+ contracts

Source prog.
+ proof Bytecode

+ proof

Code Producer Code Consumer

untrusted tool trusted tool

Chair of Software
Engineering

Advantages

Verification of functional properties

PTCs are not part of the trusted

computing base

 Small trusted computing base: Proof

Checker

 Verification on the source language

9

Chair of Software
Engineering

Basics of our PTC

10

Bytecode Language:
.Net CIL Bytecode

Translation Functions

 structured control flow
 variables

Logic:
Hoare-Style

 unstructured control flow
 operand stack

Bytecode
Logic

Source Language:
C#, Eiffel, and Java

Chair of Software
Engineering

Overview

•  Proof-Carrying Code

•  Proof-Transforming Compilation
Ø Semantics for Java and Eiffel
Ø A Hoare-style logic for Bytecode
Ø Proof Translation

Chair of Software
Engineering

The Subset of Java

12

Assignment and
compound While and break

Try-finally and throw

b = 2

b = 2

b = 2 Exception

Other features:
 Try-catch
 If then else
 Read and write fields
 Routine invocation
 Single inheritance

Chair of Software
Engineering

Why is this Subset of Java interesting?

13

Chair of Software
Engineering

Why is this Subset of Java interesting?

14

b= ? Normal or Exception? b= 4 Normal Does this program compile in C#?

b = 1

b = 2

b = 2

b = 3

b = 3

b = 4

Chair of Software
Engineering

Semantics for Java

•  Operational and axiomatic semantics
•  The logic is based on the programming logic developed

by P. Müller and A. Poetzsch-Heffter
•  Properties of method bodies are expressed by Hoare

triples of the form

15

Exception postcondition Normal postcondition

Break postcondition

Exception postcondition Normal postcondition

l  Properties of methods

Chair of Software
Engineering

16

The subset of Eiffel

Basic instructions such as assignments, if then
else, and loops

Exception handling: rescue clauses
Once routines
Multiple inheritance

Chair of Software
Engineering

Eiffel: Exception Handling

17

Chair of Software
Engineering

18

Eiffel: Once Functions

j := f (2)

k := f (4)

{ j = 3 }

{ j = 3 and k = 3 }

Chair of Software
Engineering

Semantics for Eiffel

Operational and axiomatic semantics
Based on the logic by P. Müller and A. Poetzsch-

Heffter
Properties of routines and routine bodies are

expressed by Hoare triples of the form

Proof of soundness and completeness

19

Exception postcondition Normal postcondition

Chair of Software
Engineering

20

Logic: Assignment Rule

Chair of Software
Engineering

21

Logic: Compound

Chair of Software
Engineering

Example1: Hoare Logic

Chair of Software
Engineering

Example 2: Exceptions

Chair of Software
Engineering

Example

Compound	 Rule	

Assignment	 Rule	

Assignment	 Rule	

Chair of Software
Engineering

Rescue

{Q’} r {INV ∧ (Retry ⇒ P) ∧ (¬ Retry ⇒ R) , INV ∧ R }

P ⇒ P

{INV ∧ P } do b rescue r end {INV ∧ Q

Error postcondition Normal postcondition

“Retry invariant”

, Q’ {INV ∧ P } b {INV ∧ Q }

 } , INV ∧ R

‘
‘

‘

Chair of Software
Engineering

26

Example: rescue

Chair of Software
Engineering

27

Example: rescue

Chair of Software
Engineering

Overview

•  Proof-Carrying Code

•  Proof-Transforming Compilation
Ø Semantics for Java and Eiffel
Ø A Hoare-style logic for Bytecode
Ø Proof Translation

Chair of Software
Engineering

29

The bytecode Language
Bytecode language similar to .Net CIL bytecode

Boolean type
Instead of using an array of local variables like
in .Net CIL, we use the name of the source
variable

Chair of Software
Engineering

The Bytecode Language and its Logic

•  Bytecode Logic:

Ø Logic developed by F. Bannwart and P. Müller
Ø Instruction specification

30

Label Precondition CIL Instruction

Chair of Software
Engineering

31

The bytecode Logic

Rules for instructions

Chair of Software
Engineering

32

The bytecode Logic

Chair of Software
Engineering

33

Example Bytecode Proof

Source Program:
 x := 5
 y := 1

Compiled Program:

 L00: push 5
 L01: pop x

 L02: push 1
 L03: pop y

Chair of Software
Engineering

Overview

•  Proof-Carrying Code

•  Proof-Transforming Compilation
Ø Semantics for Java and Eiffel
Ø A Hoare-style logic for Bytecode
Ø Proof Translation

Chair of Software
Engineering

Proof-Transforming Compilation
for Eiffel

Contract Translator
Ø Deep embedding of contracts, pre- and

postconditions
Ø Translation functions

§  Input: Deep embedding of Boolean expressions
§  Output: First Order Logic

•  Proof Translator

•  Soundness Proof

35

Chair of Software
Engineering

Compiling Eiffel to .Net CIL

36

Eiffel
Compiler

Inheritance Eiffel class CIL interface

A

C

B

Interface
A

Class
A

Interface
B

Class
B

Interface
C

Class
C

Eiffel
Multiple

Inheritance

CIL
Single

Inheritance

CIL class

Chair of Software
Engineering

37

Applications

CIL proof:

Assignment	 Rule	

Compound	 Rule	

Assignment	 Rule	

Chair of Software
Engineering

38

Tool Support

XML
file

XML
parser

AST

Proof-Transforming Compiler

CIL code
+

proof

DEMO

Specification
translator

Proof
translator

Chair of Software
Engineering

39

Experiments with PTC
Example #Classes #Routines #lines

Eiffel
#lines source

proof
Boolean
expressions

2 3 76 205

Attributes 3 5 83 167
Conditionals 1 2 55 154
Loops 1 1 31 73
Bank Account
simple

1 3 57 108

Bank Account 1 5 57 130
Sum Integers 1 1 35 126
Subtyping 3 5 41 117
Demo 4 8 152 483
Total 17 33 587 1563

Chair of Software
Engineering

40

Size of the proof
Example #lines

Eiffel
#lines
source
proof

#lines in
Isabelle

Boolean
expressions

76 205 711

Attributes 83 167 1141
Conditionals 55 154 510
Loops 31 73 305
Bank Account
simple

57 108 441

Bank Account 57 130 596

Sum Integers 35 126 358
Subtyping 41 117 756
Demo 152 483 1769
Total 587 1563 6587

Chair of Software
Engineering

41

Experiments Proof Checker
Isabelle Example #lines in

Isabelle
Simplifier

Proof Script
(in sec)

Optimized
Proof Script

(in sec)
Boolean expressions 711 3.4 1.9
Attributes 1141 3.6 2.2
Conditionals 510 7.3 3.8
Loops 305 14.1 3.2
Bank Account simple 441 5.5 2.4

Bank Account 596 12.8 4.6

Sum Integers 358 45.2 6.3
Subtyping 756 4.3 2.3
Demo 1769 92.2 27.5
Total 6587 192.4 (~3’) 54.2

