Software Verification

Sebastian Nanz

Lecture 10: Abstract Interpretation

Chair of Software Engineering

Abstract Interpretation

Introduction

One framework to rule them all

$>$ In the past lectures we have introduced a particular style of program analysis: data flow analysis.
$>$ For these types of analyses, and others, a main concern is correctness: how do we know that a particular analysis produces sound results (does not forget possible errors)?
$>$ In the following we discuss abstract interpretation, a general framework for describing program analyses and reasoning about their correctness.

Main ideas: Concrete computations

- An ordinary program describes computations in some concrete domain of values.
- Example: program states that record the integer value of every program variable.

$$
\sigma \in \text { State }=\text { Var }->Z
$$

\Rightarrow Possible computations can be described by the concrete semantics of the programming language used.

Main ideas: Abstract computations

> Abstract interpretation of a program describes computation in a different, abstract domain.
> Example: program states that only record a specific property of integers, instead of their value: their sign, whether they are even/odd, or contained in [-32768, 32767] etc.

$$
\sigma \in \text { AbstractState }=\text { Var } \rightarrow \text { \{even, odd }\}
$$

$>$ In order to obtain abstract computations, an abstract semantics for the programming language has to be defined.
> Abstract interpretation provides a framework for proving that the abstract semantics is sound with respect to the concrete semantics.

The collecting semantics

We assume the state of a program to be modeled as:

$$
\sigma \in \text { State }=\text { Var } \rightarrow \mathrm{Z}
$$

We will use the following notation for function update:

$$
\sigma[x \mapsto k](y)= \begin{cases}k & \text { if } x=y \\ \sigma(y) & \text { otherwise }\end{cases}
$$

We construct the collecting semantics as a function which gives for every program label the set of all possible states.
C : Labels ->

Rules of the collecting semantics

Note: In difference to the lecture on program analysis, labels are not on blocks, but on edges.

Example: Collecting semantics

Assume $x>0$.

$$
\begin{aligned}
& \downarrow^{1} \\
& \text { [} y:=1] \\
& \xrightarrow{\downarrow} \underset{[x \neq 0]}{ } \xrightarrow{5} \\
& \begin{aligned}
C_{2}= & \left\{\sigma[y \mapsto 1] \mid \sigma \in C_{1}\right\} \cup \\
& \left\{\sigma[x \mapsto \sigma(x)-1] \mid \sigma \in C_{4}\right\}
\end{aligned} \\
& \begin{aligned}
C_{2}= & \left\{\sigma[y \mapsto 1] \mid \sigma \in C_{1}\right\} \cup \\
& \left\{\sigma[x \mapsto \sigma(x)-1] \mid \sigma \in C_{4}\right\}
\end{aligned} \\
& C_{3}=C_{2} \cap\{\sigma \mid \sigma(x) \neq 0\} \\
& \text { [} y:=x^{\star} y \text {] } \\
& \downarrow 4 \\
& \text { [} x:=x-1] \\
& C_{1}=\{\sigma \mid \sigma(x)>0\} \\
& C_{4}=\left\{\sigma[y \mapsto \sigma(x) \cdot \sigma(y)] \mid \sigma \in C_{3}\right\} \\
& C_{5}=C_{2} \cap\{\sigma \mid \sigma(x)=0\}
\end{aligned}
$$

Solving the equations

$>$ The equation system we obtain has variables C_{1}, \ldots, C_{5} which are interpreted over the complete lattice 8 (State).
\rightarrow We can express the equation system as a monotone
function F: $8(\text { State })^{5} \rightarrow 8(\text { State })^{5}$

$$
F\left(C_{1}, \ldots, C_{5}\right)=\left(\{\sigma \mid \sigma(x)>0\}, \ldots, C_{2} \cap\{\sigma \mid \sigma(x)=0\}\right)
$$

$>$ Using Tarski's Fixed Point Theorem, we know that a least fixed point exists.
$>$ We have seen: The least fixed point can be computed by repeatedly applying F, starting with the bottom element $\perp=$ $(\varnothing, \varnothing, \varnothing, \varnothing, \varnothing)$ of the complete lattice until stabilization.

$$
F(\perp) \sqsubseteq F(F(\perp)) \sqsubseteq \ldots \sqsubseteq F^{n}(\perp)=F^{n+1}(\perp)
$$

Example: Fixed Point Computation

$$
\begin{aligned}
& \downarrow^{1} \varnothing\{[x \mapsto m, y \mapsto n] \mid m>0\} \\
& \text { [} y:=1 \text {] } \\
& \forall 2 \varnothing\{[x \mapsto m, y \mapsto 1] \mid m>0\} \cup\{[x \mapsto m-1, y \mapsto m] \mid m>0\} \\
& {[x \neq 0] \xrightarrow{5} \varnothing\{[x \mapsto 0, y \mapsto m] \mid m>0\} \quad \text {... etc. }} \\
& \downarrow 3 \varnothing\{[x \mapsto m, y \mapsto 1] \mid m>0\} \\
& \text { [} y:=x^{*} y \text {] } \\
& \downarrow 4 \varnothing\{[x \mapsto m, y \mapsto m] \mid m>0\} \\
& \text { [} x:=x-1]
\end{aligned}
$$

$$
\begin{aligned}
& C_{1}=\{\sigma \mid \sigma(x)>0\} \\
& C_{2}=\left\{\sigma[y \mapsto 1] \mid \sigma \in C_{1}\right\} \cup \\
&\left\{\sigma[x \mapsto \sigma(x)-1] \mid \sigma \in C_{4}\right\} \\
& C_{3}= C_{2} \cap\{\sigma \mid \sigma(x) \neq 0\} \\
& C_{4}=\left\{\sigma[y \mapsto \sigma(x) \cdot \sigma(y)] \mid \sigma \in C_{3}\right\} \\
& C_{5}= C_{2} \cap\{\sigma \mid \sigma(x)=0\}
\end{aligned}
$$

Domain for Sign Analysis

We want to focus on the sign of integers, using the domain

$$
\sigma \in \text { AbstractState = Var } \rightarrow \text { Signs }
$$

where Signs is the following structure:

T represents all integers

+ the positive integers
- the negative integers

0 the set $\{0\}$
\perp the empty set

How is such a structure called?
A complete lattice

Example: Sign Analysis

Assume $x>0$. Use the abstract domain for sign analysis.

$$
[y:=1]
$$

$$
\xrightarrow[{\substack{2 \\[x \neq 0]}}]{ } \xrightarrow{5}
$$

$A_{1}=[x \mapsto+, y \mapsto T]$

$$
A_{2}=A_{1}[y \mapsto+] \sqcup
$$

$$
A_{4}\left[x \mapsto A_{4}(x) \ominus+\right]
$$

$$
A_{3}=A_{2}
$$

$$
A_{4}=A_{3}\left[y \mapsto A_{3}(x) \otimes A_{3}(y)\right]
$$

$$
A_{5}=A_{2} \sqcap[x \mapsto 0, y \mapsto T]
$$

Chair of Software Engineering

Abstract Interpretation

Foundations

Introductory example: Expressions

A little language of expressions

Syntax
$e::=n \mid e^{*} e$

Concrete semantics
$C[n]=n$
$C\left[e^{*} e\right]=C[e] \cdot C[e]$

Example
$C[-3 * 2 *-5]=C[-3 * 2] \cdot C[-5]=C[-3 * 2] \cdot(-5)=\ldots=30$

Introductory example: Abstraction

Assume that we are not interested in the value of an expression but only in its sign:
> Negative:
> Zero:
> Positive: +

Abstract semantics
$A[n]=\operatorname{sign}(n)$
$A\left[e^{*} e\right]=A[e] \otimes A[e]$

\otimes	-	0	+
-	+	0	-
0		0	0
+			+

Example

$$
A[-3 * 2 *-5]=A[-3 * 2] \otimes A[-5]=A[-3 * 2] \otimes(-)=\ldots=
$$

$$
=(-) \otimes(+) \otimes(-)=(+)
$$

Introductory example: Soundness

$>$ We want to express that the abstract semantics correctly describes the sign of a corresponding concrete computation.
$>$ For this we first link each concrete value to an abstract value:

Representation function
$\beta: Z->\{-, 0,+\}$
$\beta(n)= \begin{cases}- & \text { if } n<0 \\ 0 & \text { if } n=0 \\ + & \text { if } n>0\end{cases}$

Introductory example: Soundness

$>$ Conversely, we can also link abstract values to the set of concrete values they describe:

Concretization function

$$
\begin{aligned}
& v:\{-, 0,+\}->(Z) \\
& y(s)= \begin{cases}\{n \mid n<0\} & \text { if } s=- \\
\{0\} & \text { if } s=0 \\
\{n \mid n>0\} & \text { if } s=+\end{cases}
\end{aligned}
$$

> Soundness then describes intuitively that the concrete value of an expression is described by its abstract value:

$$
\forall e . C[e] \in v(A[e])
$$

Extending the language

Syntax

$e::=n\left|e^{*} e\right| e+e \mid-e$

Abstract semantics
$A[n]=\operatorname{sign}(n)$
$A[-e]=\theta A[e]$
$A[e+e]=A[e] \oplus A[e]$

	-	0	+
Θ	+	0	-
\oplus	-	0	+
-	-	-	$?$
0		0	+
+			+

Observation: The abstract domain $\{-, 0,+\}$ is not closed under the interpretation of addition.

Extending the abstract domain

We have to introduce an additional abstract value:
T "top" - (any value)

\oplus	-	0	+	T
-	-	-	T	T
0		0	+	T
+			+	T
T				T

We can extend the concretization function to the new abstract domain $\{-, 0,+, T, \perp\}$ (add \perp for completeness):

$$
Y(T)=\mathbf{Z} \quad Y(\perp)=\varnothing
$$

We obtain the following structure when drawing the partial order induced by

$$
a \leq b \text { iff } v(a) \subseteq v(b)
$$

How is such a structure called?
A complete lattice

Construction of complete lattices

> If we know some complete lattices, we can construct new ones by combining them
$>$ Such constructions become important when designing new analyses with complex analysis domains

Example: Total function space

Let $\left(D_{1}, \sqsubseteq_{1}\right)$ be a partially ordered set and let S be a set.
Then (D, \sqsubseteq), defined as follows, is a complete lattice:
$>D=S \rightarrow D_{1} \quad$ ("space of total functions")
$>f \sqsubseteq f^{\prime}$ iff $\forall s \in S: f(s) \sqsubseteq_{1} f^{\prime}(s)$ ("point-wise ordering")

The framework of abstract interpretation

$>$ Starting from a concrete domain C, define an abstract domain (A, \sqsubseteq), which must be a complete lattice
$>$ Define a representation function β that maps a concrete value to its best abstract value

$$
\beta: C \rightarrow A
$$

\rightarrow From this we can derive the concretization function y

$$
\begin{aligned}
& v: A \rightarrow \wp(C) \\
& \gamma(a)=\{c \in C \mid \beta(c) \sqsubseteq a\}
\end{aligned}
$$

and abstraction function a for sets of concrete values

$$
\begin{aligned}
& a: \wp(C) \rightarrow A \\
& a(C)=\sqcup\{\beta(c) \mid c \in C\}
\end{aligned}
$$

Galois connections

$>$ The following properties of a and y hold:

Monotonicity

(1) $\quad a$ and y are monotone functions

Galois connection
(2) $\quad c \subseteq \gamma(a(c))$
for all $c \in \wp(C)$
(3) $\quad a \sqsupseteq a(y(a))$
for all $a \in A$
$>$ Galois connection: This property means intuitively that the functions a and y are "almost inverses" of each other.

Figure: Galois connection

Galois insertions

- For a Galois connection, there may be several elements of A that describe the same element in C
$>$ As a result, A may contain elements which are irrelevant for describing C
$>$ The concept of Galois insertion fixes this:

Monotonicity

(1) $\quad a$ and y are monotone functions

Galois insertion
(2) $\quad c \subseteq y(a(c))$
(3) $\quad a=a(y(a))$
for all $c \in \wp(C)$
for all $a \in A$

Figure: Galois insertion

Induced Operations

- A Galois connection can be used to induce the abstract operations from the concrete ones.

abstract execution
concrete execution
$>$ We can show that the induced operation $\underline{o p}=a \circ o p \circ \gamma$ is the most precise abstract operation in this setting.
$>$ The induced operation might not be computable. In this case we can define an upper approximation op\#, op $\sqsubseteq \mathrm{op}^{\#}$, and use this as abstract operation.

Chair of Software Engineering

Abstract Interpretation

Widening

Range analysis

$>$ To introduce the notion of widening, we have a look at range analysis, which provides for every variable an overapproximation of its integer value range.
$>$ We are left with the task of choosing a suitable abstract domain: the interval lattice suggests itself.

Interval $=\{\perp\} \cup\{[x, y] \mid x \leq y, x \in \mathbf{Z} \cup\{\infty\}, y \in \mathbf{Z} \cup\{\infty\}\}$

Example

Consider the following program:

$$
\begin{aligned}
& \downarrow^{1}[x \rightarrow \top] \\
& \text { [} x:=1 \text {] } \\
& \longrightarrow \underset{4}{\forall} \underset{\sim}{x \rightarrow[1,1]]} \sqcup[x \mapsto[2,2]]=[x \mapsto[1,2]] \\
& {[x \leq n] \xrightarrow{4}} \\
& \downarrow 3 \quad[x \mapsto[1,1]] \\
& \text { — } \mathrm{x}:=\mathrm{x}+1 \text {] }
\end{aligned}
$$

$>$ At program point 2, the following sequence of abstract states arises: [$x \mapsto[1,1]]$, $x \mapsto[1,2]],[x \mapsto[1,3]], \ldots$
Consequence: The analysis never terminates (or, if n is statically known, converges only very slowly).

The ascending chain condition

$>$ Using an arbitrary complete lattice as abstract domain, the solution is not computable in general.
$>$ The reason for that is the fact that the value space might be unbounded, containing infinite ascending chains: $\left(I_{n}\right)_{n}$ is such that $I_{1} \sqsubseteq I_{2} \sqsubseteq I_{3} \sqsubseteq \cdots$, but there exists no n such that $I_{n}=I_{n+1}=\cdots$
$>$ If we replace it with an abstract space that is finite (or does not possess infinite ascending chains), then the computation is guaranteed to terminate.
$>$ In general, we want an abstract domain to satisfy the ascending chain condition, i.e. each ascending chain eventually stabilises:
if $\left(I_{n}\right)_{n}$ is such that $I_{1} \sqsubseteq I_{2} \sqsubseteq I_{3} \sqsubseteq \cdots$,
then there exists n such that $I_{n}=I_{n+1}=\cdots$

Non-termination

$>$ The reason for the non-termination in the example is that the interval lattice contains infinite ascending chains.

$>$ Trick, if we cannot eliminate ascending chains: We redefine the join operator of the lattice to jump to the extremal value more quickly.
Before: $[1,1] \cup[2,2]=[1,2] \quad$ Now: $[1,1] \nabla[2,2]=[1,+\infty]$

A widening $\nabla: D \times D \rightarrow D$ on a partially ordered set (D, \subseteq) satisfies the following properties:

1. For all $x, y \in D . \quad x \sqsubseteq x \nabla y$ and $y \sqsubseteq x \nabla y$
2. For all ascending chains $x_{1} \sqsubseteq x_{2} \sqsubseteq x_{3} \sqsubseteq \cdots$ the ascending chain $y_{1}=x_{1} \sqsubseteq y_{2}=y_{1} \nabla x_{2} \sqsubseteq \cdots \sqsubseteq y_{n+1}=y_{n} \nabla x_{n+1}$ eventually stabilizes.
$>$ Widening is used to accelerate the convergence towards an upper approximation of the least fixed point.

Example (continued)

$>$ Assume we have a widening operator ∇ that is defined such that $[1,1] \nabla[2,2]=[1,+\infty]$

$$
\begin{aligned}
& \downarrow^{1}[x \mapsto \top] \\
& \begin{array}{c}
{[x:=1][x \leftrightarrow[1,+\infty]] \nabla[x \rightarrow[1, n]]=[x \leftrightarrow[1,+\infty]]} \\
\quad \forall 2[x \rightarrow[1,1]] \nabla[x \rightarrow[2,2]]=[x \rightarrow[1,+\infty]]
\end{array} \\
& {[x \leq n] \xrightarrow{4}[x \rightarrow[n+1,+\infty]]} \\
& \downarrow 3[x \mapsto[1,1]][x \mapsto[1, n]] \\
& \text { [} x:=x+1]
\end{aligned}
$$

> The analysis converges quickly.

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL'77, pages 238-252. ACM Press, 1977

Neil D. Jones, Flemming Nielson: Abstract Interpretation: a Semantics-Based Tool for Program Analysis, 1994

Flemming Nielson, Hanne Riis Nielson, Chris Hankin:
Principles of Program Analysis, Springer, 2005.
Chapter 1: Section 1.5
Chapter 4 (advanced material)

