Software Verification

Sebastian Nanz

Lecture 10: Abstract Interpretation
Abstract Interpretation

Introduction
One framework to rule them all

- In the past lectures we have introduced a particular style of program analysis: data flow analysis.

- For these types of analyses, and others, a main concern is *correctness*: how do we know that a particular analysis produces *sound* results (does not forget possible errors)?

- In the following we discuss *abstract interpretation*, a general framework for describing program analyses and reasoning about their correctness.
Main ideas: Concrete computations

- An ordinary program describes computations in some **concrete domain** of values.
 - **Example:** program states that record the integer value of every program variable.

 \[\sigma \in \text{State} = \text{Var} \rightarrow \mathbb{Z} \]

- Possible computations can be described by the **concrete semantics** of the programming language used.
Main ideas: Abstract computations

- Abstract interpretation of a program describes computation in a different, abstract domain.

 - **Example**: program states that only record a specific property of integers, instead of their value: their sign, whether they are even/odd, or contained in \([-32768, 32767]\) etc.

 \[\sigma \in \text{AbstractState} = \text{Var} \rightarrow \{\text{even, odd}\}\]

- In order to obtain abstract computations, an abstract semantics for the programming language has to be defined.

- Abstract interpretation provides a framework for proving that the abstract semantics is sound with respect to the concrete semantics.
The collecting semantics

We assume the state of a program to be modeled as:

\[\sigma \in \text{State} = \text{Var} \rightarrow \mathbb{Z} \]

We will use the following notation for function update:

\[\sigma[x \mapsto k](y) = \begin{cases}
 k & \text{if } x = y \\
 \sigma(y) & \text{otherwise}
\end{cases} \]

We construct the collecting semantics as a function which gives for every program label the set of all possible states.

\[C : \text{Labels} \rightarrow \mathcal{P}(\text{State}) \]
Rules of the collecting semantics

\[C_i = \{ \sigma[x \mapsto n] \mid \sigma \in C_i \text{ and } C[e]\sigma = n \} \]

\[C_{l\text{true}} = \{ \sigma \mid \sigma \in C_i \text{ and } C[b]\sigma = \text{true} \} \]

\[C_{l\text{false}} = \{ \sigma \mid \sigma \in C_i \text{ and } C[b]\sigma = \text{false} \} \]

\[C_i = C_{l1} \cup C_{l2} \]

Note: In difference to the lecture on program analysis, labels are not on blocks, but on edges.
Example: Collecting semantics

Assume \(x > 0 \).

\[
C_1 = \{ \sigma \mid \sigma(x) > 0 \}
\]

\[
C_2 = \{ \sigma[y \mapsto 1] \mid \sigma \in C_1 \} \cup \{ \sigma[x \mapsto \sigma(x) - 1] \mid \sigma \in C_4 \}
\]

\[
C_3 = C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \}
\]

\[
C_4 = \{ \sigma[y \mapsto \sigma(x) \cdot \sigma(y)] \mid \sigma \in C_3 \}
\]

\[
C_5 = C_2 \cap \{ \sigma \mid \sigma(x) = 0 \}
\]
Solving the equations

- The equation system we obtain has variables $C_1, ..., C_5$ which are interpreted over the complete lattice $\wp(\text{State})$.
- We can express the equation system as a monotone function $F: \wp(\text{State})^5 \rightarrow \wp(\text{State})^5$
 \[F(C_1, ..., C_5) = (\{\sigma \mid \sigma(x) > 0\}, ..., C_2 \cap \{\sigma \mid \sigma(x) = 0\}) \]
- Using Tarski's Fixed Point Theorem, we know that a least fixed point exists.
- We have seen: The least fixed point can be computed by repeatedly applying F, starting with the bottom element $\bot = (\emptyset, \emptyset, \emptyset, \emptyset, \emptyset)$ of the complete lattice until stabilization.

\[F(\bot) \subseteq F(F(\bot)) \subseteq ... \subseteq F^n(\bot) = F^{n+1}(\bot) \]
Example: Fixed Point Computation

\[
\begin{align*}
&\downarrow^1 \emptyset \{[x\mapsto m, y\mapsto n] \mid m > 0\} \\
&[y:=1] \\
&\downarrow^2 \emptyset \{[x\mapsto m, y\mapsto 1] \mid m > 0\} \cup \{[x\mapsto m-1, y\mapsto m] \mid m > 0\} \\
&[x \neq 0] \\
&\downarrow^3 \emptyset \{[x\mapsto 0, y\mapsto m] \mid m > 0\} \\
&[y:=x\times y] \\
&\downarrow^4 \emptyset \{[x\mapsto m, y\mapsto m] \mid m > 0\} \\
&[x:=x-1]
\end{align*}
\]

\[
C_1 = \{\sigma \mid \sigma(x) > 0\} \\
C_2 = \{\sigma[y \mapsto 1] \mid \sigma \in C_1\} \cup \{\sigma[x \mapsto \sigma(x) - 1] \mid \sigma \in C_4\} \\
C_3 = C_2 \cap \{\sigma \mid \sigma(x) \neq 0\} \\
C_4 = \{\sigma[y \mapsto \sigma(x) \cdot \sigma(y)] \mid \sigma \in C_3\} \\
C_5 = C_2 \cap \{\sigma \mid \sigma(x) = 0\}
\]
Domain for Sign Analysis

We want to focus on the sign of integers, using the domain

$$\sigma \in \text{AbstractState} = \text{Var} \rightarrow \text{Signs}$$

where Signs is the following structure:

- \top represents all integers
- $+$ the positive integers
- $-$ the negative integers
- 0 the set $\{0\}$
- \bot the empty set

How is such a structure called?

A complete lattice
Example: Sign Analysis

Assume $x > 0$. Use the abstract domain for sign analysis.

\[
\begin{align*}
A_1 &= [x \mapsto +, y \mapsto T] \\
A_2 &= A_1[y \mapsto +] \sqcup \\
A_3 &= A_2 \\
A_4 &= A_3[y \mapsto A_3(x) \otimes A_3(y)] \\
A_5 &= A_2 \sqcap [x \mapsto 0, y \mapsto T]
\end{align*}
\]
Abstract Interpretation

Foundations
Introductory example: Expressions

A little language of expressions

Syntax
\(e ::= n \mid e * e \)

Concrete semantics
\(C[n] = n \)
\(C[e * e] = C[e] \cdot C[e] \)

Example
\(C[-3 * 2 * -5] = C[-3 * 2] \cdot C[-5] = C[-3 * 2] \cdot (-5) = \ldots = 30 \)
Introductory example: Abstraction

Assume that we are not interested in the value of an expression but only in its *sign*:
- Negative: –
- Zero: 0
- Positive: +

Abstract semantics

\[A[n] = \text{sign}(n) \]

\[A[e \times e] = A[e] \otimes A[e] \]

Example

\[A[-3 \times 2 \times -5] = A[-3 \times 2] \otimes A[-5] = A[-3 \times 2] \otimes (-) = ... = \]

\[= (-) \otimes (+) \otimes (-) = (+) \]
Introductory example: Soundness

- We want to express that the abstract semantics correctly describes the sign of a corresponding concrete computation.
- For this we first link each concrete value to an abstract value:

Representation function

\[\beta : \mathbb{Z} \rightarrow \{-, 0, +\} \]

\[\beta(n) = \begin{cases}
- & \text{if } n < 0 \\
0 & \text{if } n = 0 \\
+ & \text{if } n > 0
\end{cases} \]
Conversely, we can also link abstract values to the set of concrete values they describe:

\[
\gamma : \{ -, 0, + \} \rightarrow \mathcal{P}(\mathbb{Z})
\]

\[
\gamma(s) = \begin{cases}
\{ n \mid n < 0 \} & \text{if } s = - \\
\{ 0 \} & \text{if } s = 0 \\
\{ n \mid n > 0 \} & \text{if } s = +
\end{cases}
\]

\textbf{Soundness} then describes intuitively that the concrete value of an expression is described by its abstract value:

\[
\forall e. \ C[e] \in \gamma(A[e])
\]
Extending the language

Syntax
\[e ::= n \mid e \ast e \mid e + e \mid -e \]

Abstract semantics
\[A[n] = sign(n) \]
\[A[-e] = \oplus A[e] \]

<table>
<thead>
<tr>
<th></th>
<th>-</th>
<th>0</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ominus)</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>-</th>
<th>0</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\oplus)</td>
<td>-</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>?</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Observation: The abstract domain \{-,0,\} is not closed under the interpretation of addition.
Extending the abstract domain

We have to introduce an additional abstract value:

\[T \quad "top" \quad - \quad (any\ value) \]

\[
\begin{array}{cccc}
\oplus & - & 0 & + & T \\
- & - & - & T & T \\
0 & 0 & + & T \\
+ & + & + & T \\
T & & & T \\
\end{array}
\]
The new abstract domain

We can extend the concretization function to the new abstract domain \{-,0,+,,\top,\bot\} (add \bot for completeness):

\[
\gamma(\top) = \mathbb{Z} \\
\gamma(\bot) = \emptyset
\]

We obtain the following structure when drawing the partial order induced by

\[a \leq b \text{ iff } \gamma(a) \subseteq \gamma(b)\]

How is such a structure called?

A complete lattice
Construction of complete lattices

- If we know some complete lattices, we can construct new ones by combining them.
- Such constructions become important when designing new analyses with complex analysis domains.

Example: Total function space

Let \((D_1, \sqsubseteq_1)\) be a partially ordered set and let \(S\) be a set. Then \((D, \sqsubseteq)\), defined as follows, is a complete lattice:

- \(D = S \rightarrow D_1\) ("space of total functions")
- \(f \sqsubseteq f'\) iff \(\forall s \in S : f(s) \sqsubseteq_1 f'(s)\) ("point-wise ordering")
The framework of abstract interpretation

- Starting from a concrete domain C, define an abstract domain (A, \sqsubseteq), which must be a complete lattice.

- Define a representation function β that maps a concrete value to its best abstract value.

 $$\beta: C \rightarrow A$$

- From this we can derive the concretization function γ.

 $$\gamma: A \rightarrow \mathcal{P}(C)$$

 $$\gamma(a) = \{c \in C \mid \beta(c) \sqsubseteq a\}$$

- and abstraction function α for sets of concrete values.

 $$\alpha: \mathcal{P}(C) \rightarrow A$$

 $$\alpha(C) = \bigcup \{\beta(c) \mid c \in C\}$$
Galois connections

The following properties of α and γ hold:

Monotonicity

(1) α and γ are monotone functions

Galois connection

(2) $c \subseteq \gamma(\alpha(c))$ for all $c \in \wp(C)$

(3) $a \supseteq \alpha(\gamma(a))$ for all $a \in A$

Galois connection: This property means intuitively that the functions α and γ are "almost inverses" of each other.
Figure: Galois connection
Galois insertions

- For a Galois connection, there may be several elements of A that describe the same element in C
- As a result, A may contain elements which are irrelevant for describing C
- The concept of Galois insertion fixes this:

Monotonicity

(1) α and γ are monotone functions

Galois insertion

(2) $c \subseteq \gamma(\alpha(c))$ for all $c \in \mathcal{P}(C)$
(3) $a = \alpha(\gamma(a))$ for all $a \in A$
Figure: Galois insertion
Induced Operations

- A Galois connection can be used to **induce** the abstract operations from the concrete ones.

\[
\begin{align*}
A & \xrightarrow{\alpha \circ \text{op} \circ \gamma} A \\
\uparrow & \quad \uparrow \\
\alpha & \quad \gamma \\
\wp(C) & \xrightarrow{\text{op}} \wp(C)
\end{align*}
\]

abstract execution

concrete execution

- We can show that the induced operation \(\text{op} = \alpha \circ \text{op} \circ \gamma \) is the most precise abstract operation in this setting.

- The induced operation might not be computable. In this case we can define an upper approximation \(\text{op}^\# \), \(\text{op} \subseteq \text{op}^\# \), and use this as abstract operation.
Abstract Interpretation

Widening
To introduce the notion of widening, we have a look at range analysis, which provides for every variable an over-approximation of its integer value range.

We are left with the task of choosing a suitable abstract domain: the interval lattice suggests itself.

Interval = \{ \bot \} \cup \{ [x,y] \mid x \leq y, x \in \mathbb{Z} \cup \{\infty\}, y \in \mathbb{Z} \cup \{\infty\} \}
Consider the following program:

\[
\begin{align*}
&1 \quad [x \mapsto \top] \\
&2 \quad [x := 1] \\
&3 \quad [x \leq n] \\
&4 \quad [x := x+1]
\end{align*}
\]

At program point 2, the following sequence of abstract states arises: \([x \mapsto [1,1]], [x \mapsto [1,2]], [x \mapsto [1,3]], \ldots\)

Consequence: The analysis never terminates (or, if \(n\) is statically known, converges only very slowly).
The ascending chain condition

- Using an arbitrary complete lattice as abstract domain, the solution is not computable in general.
- The reason for that is the fact that the value space might be unbounded, containing infinite ascending chains:
 \[(l_n)_n \text{ is such that } l_1 \sqsubseteq l_2 \sqsubseteq l_3 \sqsubseteq \cdots, \]
 but there exists no \(n \) such that \(l_n = l_{n+1} = \cdots \)
- If we replace it with an abstract space that is finite (or does not possess infinite ascending chains), then the computation is guaranteed to terminate.
- In general, we want an abstract domain to satisfy the ascending chain condition, i.e. each ascending chain eventually stabilises:
 if \((l_n)_n \) is such that \(l_1 \sqsubseteq l_2 \sqsubseteq l_3 \sqsubseteq \cdots, \)
 then there exists \(n \) such that \(l_n = l_{n+1} = \cdots \)
The reason for the non-termination in the example is that the interval lattice contains infinite ascending chains.

Trick, if we cannot eliminate ascending chains: We redefine the join operator of the lattice to jump to the extremal value more quickly.

Before: \([1,1] \sqcup [2,2] = [1,2]\)
Now: \([1,1] \bigtriangleup [2,2] = [1,\infty]\)
A widening $\nabla : D \times D \to D$ on a partially ordered set (D, \sqsubseteq) satisfies the following properties:

1. For all $x, y \in D$. $x \sqsubseteq x \nabla y$ and $y \sqsubseteq x \nabla y$
2. For all ascending chains $x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \cdots$ the ascending chain $y_1 = x_1 \sqsubseteq y_2 = y_1 \nabla x_2 \sqsubseteq \cdots \sqsubseteq y_{n+1} = y_n \nabla x_{n+1}$ eventually stabilizes.

Widening is used to accelerate the convergence towards an upper approximation of the least fixed point.
Assume we have a widening operator ∇ that is defined such that $[1,1] \nabla [2,2] = [1, +\infty]$

The analysis converges quickly.

Chapter 1: Section 1.5
Chapter 4 (advanced material)