E'H Ziirich

Chair of Software Engineering

Software Verification

Lecture 13: Verification of
Real-time Systems

Carlo A. Furia

Program Verification: the very idea

P: a program S: a specification
max (a, b: INTEGER): INTEGER
do require
if a>b then true
Result := a
else ensure
Result := b Result >=a
end Result >= b
end

Does PES hold?

The Program Verification problem:

. Given: a program P and a specification S

. Determine: if every execution of P, for every value of input parameters,
satisfies S

Real-time Verification

P: a program S: a specification
max (a, b: INTEGER): INTEGER ensure
do Result >= a
if a>b then Result >= b
Result = a
else ensure -- real-time
Result := b "max terminates no sooner
end than 3 ms and no later than
end 10 ms after invocation”

Does PES hold?

The Real-time Verification problem:

 Given: program P (embedded in environment E) and real-time
specification S

. Determine: if every execution of P (within E) satisfies S

Real-time Programs and Systems

Def. Real-time specification: specification that includes
exact timing information.

Def. Real-time computation: computation whose
specification is real-time. In other words: computation
whose correctness depends not only on the value of the
result but also on when the result is available.

. The timing of a piece of software is usually dependent on the
environment where the computation takes place

. Hence, in real-time verification the focus shifts from programs to
(software-intensive) systems

« The purely computational aspects can often be analyzed in isolation

. Real-time verification can then focus on real-time aspects of the
system

- e.g., synchronization, deadlines, delays, ...

while abstracting away most of the rest

Decidability vs. Expressiveness Trade-Off

The Real-time Verification problem:

 Given: program P (embedded in environment E) and real-time
specification S

. Determine: if every execution of P (within E) satisfies S

P: a system S: a real-time specification
F(P): formal model of P N(S): formal annotation for S

Does F(P) E N(S) hold?
 The classes of F(P) and N(S) should guarantee:

- enough expressiveness to include a quantitative notion
of time

- decidability of the verification problem

Real-time Model-Checking

The Real-time Model Checking problem:

. Given: a tfimed automaton A and a metric temporal-logic
formula F

. Determine: if every run of A satisfies F or not

- if not, also provide a counterexample: a run of A where F does
not hold

?
A: a timed automaton A E F F: a metric temporal-logic formula

. The model-checking paradigm is naturally extended to real-time systems

. Different choices are possible for the family of automata and of formulae

 The linear vs. branching time dichotomy is usually not significant for real-time
- linear time is almost invariably preferred

. A different attribute of time that becomes relevant in quantitative models is
discrete vs. dense time

Discrete vs. dense (continuous) time

Discrete time

sequence of isolated "steps”

every instant has a unique
successor

e.g.: the naturals N={0, 1, 2, ..}

+ simple and intuitive

+ verification usually decidable
(and acceptably complex)

+ robust and elegant theoretical
framework

- cannot model true asynchrony

- unsuitable Yo model physical
variables

Dense (or continuous) time

arbitrarily small distances

the successor of an instant is
not defined

e.g.: the reals R

+ can model true asynchrony

+ accurate modeling of
physical variables

- tricky to understand

- verification often
undecidable (or highly
complex)

- lacks a unifying framework

Discrete Real-time Model-Checking

Timed Automata and
Metric Temporal Logic

Discrete Real-time Model-Checking

Discrete real-time model checking extends standard
“untimed" model checking straightforwardly:

« Discrete Timed Automata (TA) extend the Finite-State
Automata (FSA)

« Metric Temporal Logic (MTL) extends Linear Temporal
Logic (LTL)

The Discrete Real-time Model Checking problem:

. Given: a discrete TA A and an MTL formula F
. Determine: if every run of A satisfies F or not

- if not, also provide a counterexample: a run of A where F
does not hold

A: a discrete TA A |:7F F: an MTL formula

Timed Automata: Syntax

cooking

10

Timed Automata: Syntax

Def. Nondeterministic Timed Automaton (TA)
A tuple [Z,S,C, I, E, FI:

2. finite nonempty (input) alphabet

. S: finite nonempty set of locations
(i.e., discrete states)

« C: finite set of clocks
. I, F:setof initial/final states

E: finite set of edges [s, 0, ¢, p, s']

- s € S:source location
- s' € S: target location
- 0 € Z: input character (also "label”)

~ ¢: clock constraint in the form:
ci=x®k|-cleclnc2

« X,y € Care clocks
. ke Nisaninteger constant
e ¥ is acomparison operator among <, <, >, 2, =

~- p S C: set of clock that are reset (to 0)

L off
tu 1
stop
y =0
start y s 300

11

Timed Automata: Semantics

Accepting run:

P = [off, (x=0, y=0)]
[on, (x=0, y=3)]
[cooking, (x=8, y=0)]
[on, (x=81, y=73)]
[of f, (x=85, y=77)]

Over input timed word:

W = [furn_on, 3]
[start, 11]
[stop, 84]
[turn_off, 88]

cooking

Timed Automata: Semantics

Def. A timed word w = w(1) w(2) ... w(n) € (Z x N)* is a sequence
of pairs [o(i), t(i)] such that:

- the sequence of timestamps t(1), t(2), ..., t(n) is increasing
~ [a(i), 1(i)] represents the i-th character o(i) read at time t(i)

Def. An accepting run of a TA A=[Z,S,C, I, E, F]
over input timed word w = [o(1), (1)] ... [a(n), t(n)] € (Z x N)* is a
sequence r = [s(0), v(0,1), ..., v(0,|C)] ... [s(n), v(n,1), ..., v(n,|C|)]
€ (S x NI¢l)* of (extended) states such that:

- it starts from an initial and ends in an accepting state: s(0) € I, s(n) € F
— initially all clocks are reset to 0: v(0,k) =0 forall 1<k« |C]

- for every transition (0 < i < n):

[s(i) v(i,1)...v(i,IC]) T --> [s(i+1) v(i+1,1) ... v(i+1,|C])]
some edge [s(i), a(i+1), c, p, s(i+1)] in E is followed:

. the clock values v(i,1) + (t(i+1) - (i) ... v(i,|C|) + (+(i+1) - 1(i))
satisfy the constraint c

o V(i+1,k) = if k-th clockis in p then O else v(i k) + (i+1) - (i)

Timed Automata: Semantics

Def. Any TA A=[X, S, C, I, E, F]defines
a set of input timed words (A):
(A 2 {we (ZxN)* | there is
an accepting run of A
over w }

(A) is called the language of A

With regular expressions and arithmetic:

(Ay= ([turn_on, t,]
([start, t,] [stop, t3])*

[turn_off, t,])*

14

Metric (Linear) Temporal Logic

<>[2,4) stop

“there is an occurrence of stop between 2 (included) and 4 (excluded)
time units in the future”

. [any, T < 17* [stop, 2] [stop, 3] [any, 4] [any, 7] ...
. [any, T < 3]* [stop, 3] [any, 4] [any, t > 4] ...

[1(2,4] start

"start holds between 2 (excluded) and 4 (included) time units in the future”
. [any, O] [any, 1] [any, 2] [start, 3] [start, 4] [any, t > 4]*

. [any, O] [any, 1] [any, 2] [start, 3] [any, t > 4]*

. [stop, O] [stop, 1]

15

Metric (Linear) Temporal Logic

[1(start = «>(3,10] stop)

“every occurrence of start is followed by an occurrence
of stop between 3 (excluded) and 10 (included) time
units in the future”

cook U(3,10] stop

"stop occurs between 3 (excluded) and 10 (included) time
units in the future, and cook holds until then”

16

Metric (Linear) Temporal Logic: Syntax

Def. Propositional Metric Temporal Logic (MTL) formulae:
Fu=p | -F| FAG | FU«ab>6

with p € P any atomic proposition and <a,b> an interval of
the time domain (w.l.o.g. with integer endpoints).

Temporal (modal) operators:

. next: XF £ TrueU[11]F

« bounded until: F U<a,b> G

« bounded release: F R«a,b> G £ - (-F U<a,b> -6)
. bounded eventually: <<a,b>F £ True U<a,b> F

. bounded always: [kab>F 2 -<<ab>-F

. intervals can be unbounded; e.g., [3, =)

. intervals with pseudo-arithmetic expressions; e.g.:
« >3 for [3, «)
e =1for[11]
e [0, =) is simply omitted

©

17

Metric Temporal Logic: Semantics

Def. A timed word w = [o(1), t(1)] [0(2), 1(2)] ... [o(n), t(n)] € (P x N)*
satisfies LTL formula F at position 1< i< n, denoted w, i £ F, when:

- W, iEp iff p=o(i)
~w,iE-F iff w,ik F does not hold
_w,ieEFAG iff bothw,ikFandw,ik G hold

- w,iEFU<ab>6 iff for somei< j<nsuch that t(j) - (i) € <a,b>
itisiw,jeEGand foralli<k<jitisw,kEF

o i.e., F holds until & will hold within <a, b>

For derived operators:
w,iE<w<ab>F iff forsomeic< j<nsuch that +(j) - t(i) € <a,b>
itistw, jEF
. i.e., F holds eventually within <a,b>

w,ikE[lkab>F iff foralli<j<nsuch that t(j) - 1(i) € <a,b>
itistw,jEF
. i.e., F holds always within <a,b>

18

Metric Temporal Logic: Semantics

Def. Satisfaction:
weF 2 w1 EF

i.e., timed word w satisfies formula F initially

Def. Any MTL formula F defines a set of timed words (F):
(Fy2{wePxN*| weF}

(F) is called the language of F

19

Discrete Real-time Model-Checking

From Real-time to Untimed
Model-Checking

20

Discrete-time Real-time Model Checking ©

An semantic view of the Real-time Model Checking problem:

Given: a timed automaton A and an MTL formula F

. if (A) N (-~ F)is empty then every run of A satisfies F
. if (A) N (= F)is not empty then some run of A does not satisfy F
- any member of the nonempty intersection (A) N (- F) is a counterexample

How to check (A) N (= F) = @ algorithmically (given A, F)?

For a discrete time domain we can reduce real-time model
checking to (untimed) model-checking:
« Transform timed automaton A into finite-state
automaton A’
« Transform MTL formula F into LTL formula F
(AN (-FY=0 iff (AYN(-FY=0
. Re-use standard model-checking algorithms 21

Reduce discrete-time TAs to FSAs

Use states of an FSA to "count” discrete time
steps according to the semantics of the TA

. transitions with special
events T are fime steps
without events.

'« ong represents location

> 1 onwithclockx=0

- on,q represents location
on with clock x > 1

O

22

Reduce discrete-time MTL to LTL

Use next operator X to "count” discrete time
steps according to the semantics of the MTL
formula

-<[1,3]p becomes Xp v XXp v XXXp
« More compactly X(p v X(p v Xp))

- [125 p becomes X [1(p v T)
. X°p is a shorthand for XXXXXp

. The disjunction is needed because we may have
time increments without events

- The encoding for bounded until is a bit more
intricate but not different in principle

23

Discrete-time Real-time MC: Complexity

There is an exponential blow-up in complexity when
switching from (untimed) linear-time model
checking to discrete-time real-time model
checking:

. Discrete-time real-time MTL model checking:
EXPSPACE-complete

- in practice: double-exponential time
. LTL model checking: PSPACE-complete
- in practice: singly-exponential time

 The blow up occurs only if the constants (in tfimed
automata and MTL formulas) are encoded succinctly in
binary
- blow-up due to the "unrolling” of binary constants as FSA
states or nested next operators

24

Dense Real-time Model-Checking

Timed Automata and
Metric Temporal Logic

25

Dense Real-time Model-Checking

Dense real-time model checking considers the same model as
discrete real-time model checking but with R0 as time
domain:

. A dense Timed Automaton (TA) models the system

. Dense-time Metric Temporal Logic (MTL) models the
property

. The syntax of TA and MTL need not be changed for dense time
- with the possible exception of allowing fractional time bounds

. The semantics of TA and MTL is also unchanged except that:
« R0 replaces N as time domain
. Infinite words are considered by default:

- This is a technicality that we will ignore in the presentation for
simplicity, although it does affect some results.
(See later for some details.)

26

Dense Real-time Model-Checking

Dense real-time model checking extends standard
“untimed” model checking:

« Timed Automata (TA) extend Finite-State Automata
(FSA)

« Metric Temporal Logic (MTL) extends Linear Temporal
Logic (LTL)

The Dense Real-time Model Checking problem:
. Given: adense TA A and an MTL formula F
. Determine: if every run of A satisfies F or not

- if not, provide a counterexample: a run of A where F does not hold

P
A:aTA A |: F F: an MTL formula

27

Timed Automata: Syntax

cooking

28

Timed Automata: Syntax

Def. Nondeterministic Timed Automaton (TA):
atuple [Z,S,C,I,E, FI

2. finite nonempty (input) alphabet

. S: finite nonempty set of locations
(i.e., discrete states)

« C: finite set of clocks
. I, F:setof initial/final states

E: finite set of edges [s, 0, ¢, p, s']

- s € S:source location
- s' € S: target location
- 0 € Z: input character (also "label”)

~ ¢: clock constraint in the form:
ci=x®k|-clclnc2

« X,y € Care clocks
. ke Nisaninteger constant
e ¥ is acomparison operator among <, <, >, 2, =

~- p S C: set of clock that are reset (to 0)

L off
tu 1
stop
y =0
start y s 300

29

Timed Automata: Semantics

Accepting run:

r= [off, (x=0, y=0)]
[on, (x=0, y=3.2)]
[cooking, (x=8.D, y=0)]
[on, (x=81.7,y=73.2)]
[off, (x=84.91, y=76.41)]

Over input timed word:

W = [furn_on, 3.2]
[start, 11.7]
[stop, 84.9]
[furn_off, 88.11]

30

Timed Automata: Semantics

Def. A timed word w = w(1) w(2) ... w(n) € (£ x R)* is a sequence
of pairs [o(i), 1(i)] such that:

- the sequence of timestamps t(1), t(2), ..., t(n) is increasing
~ [a(i), 1(i)] represents the i-th character o(i) read at time t(i)

Def. An accepting run of a TA A=[%, S, C, I, E, F]over input tfimed word

w = [0(1), t(1)] ... [a(n), T(n)] € (X x R)* is a sequence

r = [5(0), v(0,1), ..., v(0,|C)] ... [s(n), v(n,1), ..., v(n,|C)] € (S x RICH)*
of (extended) states such that:

- it starts from an initial and ends in an accepting state: s(0) € I, s(n) € F
— initially all clocks are reset to 0: v(0,k)=0 forall 1<k« |C]

- for every transition (O < i < n):
[s(i) v(i,1) ...v(i,IC]) 1 - [s(i+1) v(i+1,1) ... v(i+1,|C])]
some edge [s(i), o(i+1), c, p, s(i+1)] in E is followed:

. the clock values v(i 1) + (t(i+1) - (1)) ... v(i,|C|) + (+(i+1) - t(i))
satisfy the constraint c

o« V(i+1 k) = if k-th clock is in p then O else v(i k) + t(i+1) - t(i)

Timed Automata: Semantics

Def. Any TA A=[X, S, C, I, E, F]defines
a set of input timed words (A):
(A 2 {w e (Z xR)* | there is an
accepting run of Aover w }

(A) is called the language of A

With regular expressions and arithmetic:

(Ay= ([turn_on, t,]
([start, t,] [stop, t3])*
[turn_off, t,])*

32

Metric (Linear) Temporal Logic

<>[2,4) stop

“there is an occurrence of stop between 2 (included) and 4 (excluded) time
units in the future”

. [any, t<2]* [stop, 2] [stop, 3] [any, 3.5] [any, 3.7] ...
. [any, T < 3.997* [stop, 3.99] [any, 4] [any, t > 4] ...

[1(2,4] start

"start holds between 2 (excluded) and 4 (included) time units in the future”
. [any, t < 2] [start, 2.2] [start, 3] [start, 4] [any, T > 4] ...

. [any, t<2][start, 4] [any, T > 4] ...

. [stop, O] [stop, 0.3] [stop, O0.7]

33

Metric (Linear) Temporal Logic

[1(start = «>(3,10] stop)

“every occurrence of start is followed by an occurrence
of stop between 3 (excluded) and 10 (included) time
units in the future”

cook U(3,10] stop

"stop occurs between 3 (excluded) and 10 (included) time
units in the future, and cook holds until then”

34

Metric (Linear) Temporal Logic: Syntax

Def. Propositional Metric Temporal Logic (MTL) formulae:
Fu=p | -F| FAG | FUwab>G

with p € P any atomic proposition and <a,b> an interval of
the time domain (w.l.o.g. with integer endpoints).

Temporal (modal) operators:

 hext: XF 2 TrueU[11]F

« bounded until: F U<«a,b> G

. bounded release: F R<a,b> G £ - (-F U<a,b> -6)
. bounded eventually: <»<a,b>F £ True U<a,b> F

. bounded always: [kab>F 2 -<<abs-F

. intervals can be unbounded; e.g., [3,)

. intervals with pseudo-arithmetic expressions; e.g.:
« >3 for [3, =)
« =1for[1,1]
. [0, =) is simply omitted

©

35

Metric Temporal Logic: Semantics

Def. A timed word w = [a(1), 1(1)] [0(2), 1(2)] ... [o(n), ¥(n)] € (P x R)*
satisfies LTL formula F at position 1< i< n, denoted w, i £ F, when:

- W, iEp iff p=o(i)
~w,iEe-F iff w,ik F does not hold
_w,ieFAG iff bothw,ikFandw,ik G hold

- w,iEFU<ab>6 iff for somei< j<nsuch that t(j) - (i) € <a,b>
itissw,jeEGand foralli<k<jitisw,kEF

« i.e., F holds until & will hold within <a, b>

For derived operators:
w,ikw<ab>F iff forsomei< j<nsuch that +(j) - t(i) € <a,b>
itistw, jEF
. i.e., F holds eventually within <a,b>
w,ik[lkab>F iff foralli<j<nsuchthat t(j) - 1(i) € <a,b>
iTistw,jEF
. i.e., F holds always within <a,b>
36

Metric Temporal Logic: Semantics

Def. Satisfaction:
weF 2 w1 EeF

i.e., timed word w satisfies formula F initially

Def. Any MTL formula F defines a set of timed words (F):
(Fy 2{wePxR)* |[weF}

(F) is called the language of F

37

Dense Real-time Model-Checking

What's Decidable?

38

TAs not Closed under Complement

P
A: adense TA A |: F F: a dense-time MTL formula

Fundamental problem:

Dense timed automata are not closed under
complement

The complement of the language

of this TA isn't accepted by any TA:

. language of this TA: T
“there exist two p's separated by one t.u."

. complement language:
"no two p's are separated by one t.u."

. intuition: need a clock for each p within
the past time unit, but there can be an
unbounded number of such p's because time is dense 39

TAs not Closed under Complement

Fundamental problem:

. Dense TAs are not closed under complement

« MTL is clearly closed under complement

- Language of the TA: <« (pA<©=1p)
- Complement language of the TA:
~o>(pAozlp)=[l(p=>-o=1p)
« Hence, automata-theoretic dense
real-time model-checking
is unfeasible (in general)

Dense MTL Model Checking is Undecidable ©

An even more fundamental problem:

The dense-time model-checking problem for MTL
and TAs is undecidable (for infinite words)

- no approach is going to work, not just
the automata-theoretic one

MTL and TAs are "too expressive” over dense time

41

What's Decidable about Timed Automata

Let's revisit the three algorithmic components of
automata-theoretic model checking:

« MTL2TA: given MTL formula F build TA
a(F) such that (F) = (a(F))
. undecidable problem (for infinite words)
« TA-Intersection: given TAs A, B build
TA C such that (A) N (B) = (C)
« decidable
. TA-Emptiness: given TA A check whether
(A) = 0 is the case
. decidablel

42

Dense Real-time Model-Checking

Intersection of Timed Automata

43

TA-Intersection: running TAs in parallel

Given TAs A, B it is always possible to build automatically a TA
C that accepts precisely the words that both A and B accept.

TA C represents all possible parallel runs of A and B where a timed
word is accepted if and only if both A and B would accept it. The
construction is called "product automaton”.

44

TA-Intersection: Example

cookin

TA-Intersection: running TAs in parallel ©

Def. Given TAs A=[>, SA, CA, IA, EA, F”A]and B=[%, S°®, C®, I°®, EB, F®]
let C2AxB=2[X, S CC I ES F] be defined as:

. SC2sAxsh
. C¢2 CAUCB (assuming w.l.o.g. that they are disjoint sets)
I¢2{(s,1)| s€I” and t € It}

[(s. 1), 0,cAnc® phups, (s', 1)] € EC iff
[S’ G' CAI pAI s.] € EA and [T1 o/ CB/ pB, T']E EB

FC2{(s,1)| seF” and t € FB}

Theorem.
(A X B)

(A) N (B)

46

Dense Real-time Model-Checking

Checking the Emptiness
of Timed Automata

a7

TA-Emptiness

Givena TA A it is always possible to check automatically

if it accepts some timed word.

Outline of the algorithm:

Assume that clock constraints involve integer constants only
Define an equivalence relation over extended states (location + clocks)

All extended states in the same equivalence class are equivalent
w.r.t. satisfaction of clock constraints

« The equivalence relation is such that there is a finite number
of equivalence classes for any given TA

Givena TA A, build an FSA reg(A) - the "region automaton®:

- the states of reg(A) represent the equivalence classes of
the extended states of any run of of A

- the edges of reg(A) represent evolution of any extended state
within the equivalence class over any run of A

Checking the emptiness of reg(A) is equivalent to checking A's emptiness

48

Integer vs. Rational vs. Irrational

The domain for time is R>0

What about the domain for time constraints?
- constants in clock constraints of TAs (e.g.: x < k)

1. Same as the domain for time: R:0

e€.09.:. X<T
. emptiness becomes undecidablel

2. Discrete time domain: integers Z

.e.g. X<b

. emptiness fully decidable (see algorithm next)
3. Dense but not continuous: rationals Q30

e €.g.. XX 1/3

. emptiness is reducible to the integer case 45

Integer vs. Rational

Dense but not continuous: rationals Q>0
« Let Abea TA with rational constants

. let m be the least common multiple of denominators of all
constants appearing in the clock constraints of A

. let A*m be the TA obtained from A by multiplying every
constants in the clock constraints by m

. A*m has only integers constants in its clock constraints
. A accepts any timed word

[o(1), 1(1)] [a(2), 1(2)] ... [o(n), T(n)]
iff A*m accepts the "scaled” timed word
[a(1), m*t(1)] [0(2), m*+(2)] ... [o(h), m*+(n)]

. Hence checking the emptiness of A*m is equivalent to checking
the emptiness of A

50

Equivalence Relation over Extended States ©

Letus fixaTAA=[Z,S,C, I, E, FlwithC-=[x(1), ..., x(n)]

« For any clock x(i) in C let M(i) be the largest constant involving
clock x(i) in any clock constraint in E

« Let[v(1), .., v(n)] e R:0" denote a “clock evaluation" representing
any assignment of values to clocks

 Equivalence of two clock evaluations:
[v(1), ..., v(n)] ~ [v' (1), ...,v'(n)] iff all of the following hold:

1. Forall1<i<n: int(v(i)) = int(v'(i)) or v(i), v'(i) > M(i)

2. Forall1<i,j<nsuch that v(i) < M(i) and v(j) < M(j):
frac(v(i)) < frac(v(j)) iff frac(v'(i)) < frac(v'(j))

3. Forall 1<i<nsuch that v(i) < M(i):
frac(v(i))=0 iff frac(v'(i))=0

Note: int(x) is the integer part of x;
frac(x) is the fractional part of x

51

Clock Regions

Def. A clock region is an equivalence class
of clock evaluations induced by the equivalence relation ~

« For a clock evaluation v = [v(1), ..., v(n)] € R0",
[[v]] denotes the clock region v belongs to

. As a consequence of the definition of ~, any clock
region can be uniquely characterized by a finite set of
constraints on clocks

. v=[0.4; 0.9; 0.7: 0] for 4 clocksw, x,vy, z
e [[V]] is z=0<w<y<x<1
. Fact: clock regions are always in finite number

52

Clock Regions (cont'd)

More systematically:

. given a set of clocks C = [x(1), ..., x(n)]
« with M(i) the largest constant appearing in constraints on clock
x(i)
a clock region is uniquely characterized by

« For each clock x(i) a constraint in the form:
- x(i)=c withc=0,1, ..., M(i); or
~c-1<x()<c with c = 1, ..., M(i); or
— x(i) > M(i)
 For each pair of clocks x(i), x(j) a constraint in the form
- frac(x(i)) < frac(x(j))
- frac(x(i)) = frac(x(j))
- frac(x(i)) > frac(x(j))
(These are unnecessary if x(i) = ¢, x(j) = ¢, x(i) > M(i), or x(j) > M(j))

53

Clock Regions: Example

e Clocks C = [x, y]
« M(x)=2; M(y)=3

. All 60 possible clock regions:

. 12 corner points
. 30 open line segments

. 15 open regions 4
2

o Enet

/|

54

Time-successors of Regions

Fact: a clock evaluation v satisfies a clock constraint c iff every
other clock evaluation in [[v]] satisfies c

Hence, we can say that a “clock region satisfies a clock constraint”

Def. The time successor time-succ(R) of a clock region R is the set
of all clock regions (including R itself) that can be reached from R
by letting time pass (i.e., without resetting any clock).

Given a clock region R it is always possible to compute all other
clock regions that can be reached from R by letting time pass
(i.e., without resetting any clock)

Graphically:

the time-successors of a region R are the regions that can be
reached by moving along a line parallel to the diagonal in the
upward direction, starting from any point in R

(For a precise definition see e.g.: Alur & Dill, 1994) 55

Time-successors of Regions: Example

Graphically: the time-successors of a region R are the regions that can be
reached by moving along a line parallel to the diagonal in the upward direction,
starting from any point in R

Example:

. successors of region T A
2<y<3;1<x<y-1 2
(other than the region itself):

e Y>3, 1<¢x<2

e Y>3, x=2

e ¥y=3;1<x<2 1
e Y>3, Xx>2

. successors of region
y = 2; x = 2 (other than the
region itself):

e 2<y<3;x>2

Region Automaton Construction

©

For a timed automaton A it is always possible to build an FSA
reg(A) (the "region automaton” of A) such that:
(Ay =0 iff (reg(A)) =0

Def. Givena TAA=[X,S,C, I, E,F]itsregion automaton
reg(A) 2 [Z, rS, rI, rE, rF]is defined as:

rS2{(s,r)| seS andrisaclock region}
rI 2{(s,[[0,0,..,0]) | seI}

- the clock region where all clocks are reset to O

rE(o, [s,r]) 2 {(s',r') | [s,0,¢c,p,s']€E
and there exists a region r' '€ time-succ(r)
such that r'' satisfies ¢, and r' is obtained
from r'' by resetting all clocks inp to O }

rF2{(s,r)[seF}

57

Region Automaton: Example

‘EHHHE”

on

O<y<l<zx

on

y=1;z>1

" \

‘oﬁ off off
z>1l;y>1 I<y<l<zx y=1<uw
i =
cooking
O=y<x<l1
cookKin
y=Uxz=1 on
coohng rx>1ly>1
y—=0;x>1

on
O<y<z<l1

on
O<y<l=x

on

y=1,z>1

1@

Dense Real-time Model-Checking

Complexity, Variants, and Tools

59

Complexity of Emptiness Checking for TAs ©

. Building the region automaton and checking its
emptiness takes time exponential in the size of the

clock constraints

 Checking emptiness of a TA is a PSPACE-complete
problem

. Hence the region-automaton algorithm is worst-
case optimal

. However, variants of the emptiness checking
algorithm can achieve better performances in

practice

. mostly by using ad hoc data structures and
symbolic representations of regions that can be
manipulated efficiently

60

Variants of TA Emptiness Checking ©

Variants of the Emptiness Checking Algorithm are typically based
on more efficient (on average) representations of regions

. Representatives

- aclock region is represented by a concrete extended state
that belongs to it

- the concrete state is a "representative” of the region

- if it is suitably chosen, manipulating it is equivalent to
manipulating the whole region

« Clock constraints (a.k.a. zones)

- aregion is represented symbolically as a Boolean combination of
clock constraints

- successors are computed symbolically directly on the Boolean
expression

. Other equivalence relations (e.g., bisimulation)

- they can produce fewer equivalence classes
61

Tools for the Analysis of TAs

. Uppaal (Larsen, Petterson, Yi et al., ~1995)
. Kronos (Tripakis, Yovine et al., ~1995)

. HyTech (Henzinger et al., ~1994)

« PHAVer (Frehse, ~2005)

Remark: emptiness checking is also called
"reachability analysis”

the language of a TA A is empty iff the accepting
states of A cannot be reached in any computation

62

