
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz

Concepts of Concurrent Compuation – Assignments
Spring 2012

Assignment 7: Lock-free approaches

ETH Zurich

1 Stack

1.1 Background

Figure 1 shows a history for three threads. Each time line corresponds to one thread. All the
threads work on a single stack s. The query s.top (i) expects an element i to be on top of stack
s. Note that s.top (i) does not remove the top item. The command s.push (i) pushes an element
i on top of the stack s.

Figure 1: History

1.2 Task

1. Is the history shown in figure 1 linearizable? Justify your answer.

2. Is the history shown in figure 1 sequentially consistent? Justify your answer.

2 Non-linearizable queue

2.1 Background

This task has been adapted from [2]. The AtomicInteger class is a container for an integer value.
One of its methods is boolean compareAndSet(int expect, int update). This method compares
the object’s current value to expect. If the values are equal, then it atomically replaces the
object’s value with update and returns true. Otherwise, it leaves the object’s value unchanged,
and returns false. This class also provides int get() which returns the object’s actual value.

Consider the following FIFO queue implementation. It stores its items in an array items, which,
for simplicity, we will assume has unbounded size. It has two AtomicInteger fields. head is the
index of the next slot from which to remove an item. tail is the index of the next slot in which
to place an item.

class IQueue<T> {
AtomicInteger head = new AtomicInteger(0);
AtomicInteger tail = new AtomicInteger(0);

1

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz

Concepts of Concurrent Compuation – Assignments
Spring 2012

T[] items = (T[]) new Object[Integer.MAX VALUE];

public void enq(T x) {
int slot ;
do {

slot = tail .get() ;
} while (! tail .compareAndSet(slot, slot + 1));
items[slot] = x;
}

public T deq() throws EmptyException {
T value;
int slot ;

do {
slot = head.get() ;
value = items[slot];
if (value == null) {
throw new EmptyException();
}
} while (!head.compareAndSet(slot, slot + 1));
return value;
}
}

2.2 Task

Give an example showing that this implementation is not linearizable.

3 Binary search tree

3.1 Background

Listing 1 shows the class of a binary search tree. The class defines a feature insert to add a
value to a tree and a feature has to check whether the tree contains a value.

Listing 1: Non-linearizable binary search tree

class BINARY SEARCH TREE
2
create

4 make

6 feature −− Initialization
make (a value: INTEGER)

8 −− Initialize this node with ’a value ’.
do

10 left := Void
right := Void

12 value := a value
end

14

2

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz

Concepts of Concurrent Compuation – Assignments
Spring 2012

feature −− Access
16 left : BINARY SEARCH TREE

−− The left sub tree.
18 right : BINARY SEARCH TREE

−− The right sub tree.
20 value : INTEGER

−− The value.
22

feature −− Basic operations
24 insert (a new value: INTEGER)

−− Insert ’a new value’ into the tree .
26 require

tree does not have new value : not has (a new value)
28 do

if a new value < Current.value then
30 if not left = Void then

left . insert (a new value)
32 else

left := create {BINARY SEARCH TREE}.make (a new value)
34 end

else
36 if not right = Void then

right . insert (a new value)
38 else

right := create {BINARY SEARCH TREE}.make (a new value)
40 end

end
42 end

44 has (a value : INTEGER): BOOLEAN
−− Does the tree have ’a value’?

46 do
if a value = Current.value then

48 Result := True
else

50 if a value < Current.value then
if not left = Void then

52 Result := left.has (a value)
else

54 Result := False
end

56 else
if not right = Void then

58 Result := right.has (a value)
else

60 Result := False
end

62 end
end

64 end
end

3

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz

Concepts of Concurrent Compuation – Assignments
Spring 2012

3.2 Task

1. Devise an execution sequence that demonstrates that the binary search tree from Listing
1 is not linearizable; provide a corresponding history and explain why this history is non-
linearizable.

2. Using the feature compare and swap, develop a linearizable version of the binary search
tree class. Provide only the changed features.

The feature compare and swap ($entity, test value , new value) sets the value of an entity
to new value if and only if the entity currently has the value test value ; the feature call
returns whether or not the test was successful. Here, the $ operator returns the address
of the entity.

4 Practical sequential consistency

4.1 Background

One of the implicit simplifying assumptions behind many of the example programs presented
in the course has been that sequential consistency is being followed. Recall that sequential
consistency essentially means that the relative ordering of operations between threads does not
have to be maintained, but the per-thread ordering of operations should be kept. However, this
assumption is invalidated quite easily by both compilers and hardware without careful attention.

Compilers are free to reorder the instructions given in the program text, given that it does
not change the output of the sequential program.

For example:

a := 1
2 b := 2

can be rewritten to

b := 2
2 a := 1

if the compiler thinks it would be faster, as the output of the sequential program is the same in
either case.

4.2 Task

Consider this one-shot Peterson locking algorithm:

enter1 := true
2 turn := 2

if not enter2 or turn = 1 then
4 critical section

enter1 := false
6 end

How does this locking algorithm break if the compiler (or CPU) can reorder reads and writes
to independent variables? To see how, it may help to rewrite the algorithm so that intermediate
expressions are computed and stored into temporary variables, for example, turning a + 1 = b
into

tmp1 := a + 1
2 tmp2 := tmp1 = b

It may also help to review the proof of mutual exclusion given in slides for lecture 3.

4

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz

Concepts of Concurrent Compuation – Assignments
Spring 2012

References

[1] CAS-Based Lock-Free Algorithm for Shared Deques. 9th Euro-Par Conference on Parallel
Processing. Maged M. Michael 2003.

[2] Maurice Herlihy und Nir Shavit. The Art of Multiprocessor Programming. Morgan Kauf-
mann, 2008.

5

	Stack
	Background
	Task

	Non-linearizable queue
	Background
	Task

	Binary search tree
	Background
	Task

	Practical sequential consistency
	Background
	Task

