
Chair of Software Engineering

Concepts of Concurrent Computation

Bertrand Meyer
Sebastian Nanz	

Lecture 8: Lock-free approaches

2

Today's lecture

In this lecture you will learn about:

•  Problems of the locking-based approach to shared-

memory concurrent programming
•  Lock-free programming, a synchronization technique

based on atomic read-modify-write primitives
•  Software transactional memory (STM), a

synchronization mechanism based on the idea of
database transactions

•  Linearizability and sequential consistency, two
correctness conditions for concurrent objects

Chair of Software Engineering

Motivation

4

What’s wrong with locks? (1)

•  It’s difficult to program with locks, because it’s easy to ...
•  ... forget a lock: danger of data races.
•  ... take too many locks: danger of deadlock.
•  ... take locks in the wrong order: danger of deadlock.
•  ... take the wrong lock: the relation between the

lock and the data it protects is not explicit in the
program.

•  Locks cause blocking:
•  Danger of priority inversion: if a lower-priority

thread is preempted while holding a lock, higher-
priority threads cannot proceed.

•  Danger of convoying: other threads queue up waiting
while a thread holding a lock is blocked.

5

What’s wrong with locks? (2)

•  Two concepts related to locks:
•  lock overhead (increases with more locks): time

for acquiring and releasing locks, and other
resources

•  lock contention (decreases with more locks): the
situation that multiple processes wait for the
same lock

•  For performance, the developer has to carefully choose
the granularity of locking: both lock overhead and
contention need to be small.

•  Locks are also problematic for designing fault-tolerant
systems: If a faulty process halts while holding a lock,
no other process can obtain the lock.

6

What’s wrong with locks? (3)

•  Locks are not composable in general, i.e. they don’t
support modular programming (building larger programs
from smaller blocks).

•  How to implement the following method?

class Account {
 int balance;
 synchronized void deposit(int amount) {
 balance = balance + amount;
 }
 synchronized void withdraw(int amount) {
 balance = balance - amount;
 }
}

void transfer(Account acc1, Account acc2, int amount)

7

What’s wrong with locks? (4)

•  Although deposit and withdraw are correctly
implemented by themselves, the following is incorrect:

•  Instead we would have to add explicit locking code:

void transfer(Account acc1, Account acc2, int amount) {
 acc1.withdraw(amount);
 acc2.deposit(amount);
}

void transfer(Account acc1, Account acc2, int amount) {
 synchronized (acc1) {
 synchronized (acc2) {
 acc1.withdraw(amount);
 acc2.deposit(amount);
 }
 }
}

8

Concurrent programming without locking

•  Use a pure message-passing approach:
•  Since no data is shared, there is no need for locks
•  Of course message-passing approaches have their

own drawbacks, for example
•  potentially larger overhead of messaging
•  the need to copy data which has to be shared
•  potentially slower access to data, e.g. to read-

only data structures which need to be shared
•  If a shared-memory approach is preferred, the only

alternative to using locks is to make the implementation
of a concurrent program lock-free.

9

Lock-free approaches

•  Lock-free programming using atomic read-modify-write
primitives, such as compare and swap (CAS)

•  Software transactional memory (STM), a programming
model based on the idea of database transactions

Chair of Software Engineering

Lock-free programming

11

Lock-free programming

•  Lock-free programming is the idea to write shared-
memory concurrent programs that don’t use locks but
can still ensure thread-safety

•  Instead of locks, use stronger atomic operations such as
compare-and-swap (atomic read-modify-write
primitives)

•  These primitives typically have to be provided by
hardware

•  Coming up with general lock-free algorithms is hard
•  Hence usually one focuses on developing lock-free data

structures: stack, list, queue, buffer, ...

12

Classes of lock-free algorithms

•  For lock-free algorithms one typically distinguishes
between the following two classes:

•  lock-free: some process completes in a finite
number of steps (free from deadlock)

•  wait-free: all processes complete in a finite
number of steps (free from starvation)

•  Wait-free implies lock-free

13

Compare-and-swap (recap)

•  Compare-and-swap (CAS) takes three parameters: the
address of a memory location, an old and a new value

•  The new value is atomically written to the memory
location if the content of the location agrees with the
old value

CAS (x, old, new)
 do

 if *x = old then
 *x := new;
 result := true

 else
 result := false
 end
 end

14

Simple lock-free stack (1)

•  Using CAS, we obtain the following lock-free
implementation of a stack, due to (Treiber, 1986)

•  A stack of elements (here of integer type) is
represented as a linked list of nodes

•  The top of the stack is denoted by the node head

class Node {
 Node* next;
 int item;
}

Node* head; // top of the stack

15

Simple lock-free stack (2)

•  In the implementation of push and pop, a common pattern
in lock-free algorithms is used:

1.  read a value from the current state
2.  compute an updated value based on the read value
3.  atomically update the state by swapping the new

for the old value

void push (int value) {
 Node* oldHead;
 Node* newHead := new Node();
 node.item := value;
 do {
 oldHead := head;
 newHead.next := head;
 } while (!CAS(&head, oldHead, newHead));
}

16

Simple lock-free stack (3)

•  If the state changes between steps 1 and 3, the CAS-
operation fails and the algorithm is repeated until
success

int pop () {
 Node* oldHead;
 Node* newHead;
 do {
 oldHead := head;
 if(oldHead = null) return EMPTY;
 newHead := oldHead.next;
 } while(!CAS(&head, oldHead, newHead));
 return oldHead.item;
}

17

The ABA problem (1)

•  In the stack example, the following has to be avoided:
•  T1: starts pop() – reads value of current head as X
•  T2: executes pop(), removing X from the stack
•  T2: modifies the stack arbitrarily
•  T2: executes push(X), putting X back on the stack
•  T1: finishes pop() – CAS succeeds, since X is on top

18

The ABA problem (2)

•  This problematic pattern is called the ABA problem:
•  a value is read from state A
•  the state is changed to state B
•  the CAS operation does not distinguish between A

and B, so it assumes it is still A
•  The problem is avoided in the simple stack example as

push always puts a new node, and the old node’s memory
location is not freed up yet (if the memory address
would be reused)

19

Lock-free programming: Discussion

•  Lock-free programming can provide good performance in
some situations, avoiding some of the problems
mentioned for locks (e.g. priority inversion)

•  It’s difficult to correctly implement lock-free
algorithms (see ABA-problem)

•  Most work confined to data structures: for these well-
established algorithms and implementations are available

•  One main restriction is that most read-modify-write
primitives operate only on a single word: this leads to
unnatural structuring of algorithms

Chair of Software Engineering

Software Transactional Memory (STM)

21

Motivation

•  As we have seen, lock-free programming has
disadvantages in practice: algorithms can become very
complex and have an unnatural structure

•  This is because conventional atomic primitives can only
operate on one word at a time

•  Software transactional memory (STM) aims at
simplifying atomic updates of multiple independent
words

•  STM uses the idea of transaction from database
management systems

22

Database transactions

•  Database transaction: a sequence of operations
performed within a database managament systems,
enjoying the ACID properties:

•  Atomicity: Transactions appear to execute
completely, or not at all.

•  Consistency: Transactions preserve consistency of
the database.

•  Isolation: Other operations cannot access data
modified by a currently incomplete transaction.

•  Durability: All committed transactions are
guaranteed to persist.

•  In the context of STM, we are mostly interested in
Atomicity and Isolation.

23

(Hardware) transactional memory

•  Software transactional memory is based on earlier ideas
of a multiprocessor hardware architecture to support
lock-free programming: (hardware) transactional
memory (Herlihy and Moss, 1993)

•  Not yet implemented, but implementation suggested:
•  adding some specialized cache
•  modifying cache coherence protocols, which

maintain consistency between caches and memory
and do much of the task already

24

Software transactional memory

•  Because of the lag of hardware implementation,
development has focused on software implementations
of the transaction idea, starting with the work of
(Shavit and Touitou, 1995)

•  Idea: Allow code to be enclosed by an atomic-block,
with the guarantee that it executes atomically with
respect to other atomic-blocks

•  Currently mostly research prototypes
•  The functional language Haskell offers some nice

support

25

STM implementations

•  Many implementation variants are possible
•  Optimistic implementation approach:

•  atomic-block runs without locking, but writes
instead to a transaction log

•  upon completion of the atomic-block, the log is
validated and if found consistent the changes are
committed

•  if validation fails, the block is reexecuted

26

STM: Discussion

•  Advantages:
•  Simple and effective programming model
•  Transactions may be composed (Harris et al.,

2005)
•  Increased concurrency, no waiting for resources

•  Disadvantages:
•  Restrictions on operations within atomic-blocks:

since roll-back must be available, no externally
observable effects such as IO are allowed

•  Performance loss with respect to fine-grained
locking: with current implementations, the
overhead of transaction logs and consistency
checking amortizes only with larger numbers of
processing units

Chair of Software Engineering

Linearizability

28

Sequential objects

•  We can understand the execution of a system as
operations of a collection of (sequential) processes on
data objects

•  Each object has a type, describing its possible values
and the operations for modifying them

•  What does it mean for such objects to be correct?
•  In a sequential system, where there is only one process,

it is easy to specify the behavior of each operation:
•  Pre- and postconditions can be used
•  Intermediate states are never visible upon

invocation of an operation

29

Concurrent objects

•  In a concurrent system, operations can potentially be
invoked on objects which are in intermediate states

•  Hence it is more difficult to define correctness for
concurrent objects

•  Linearizability provides a correctness condition for
concurrent objects

30

Linearizability: Intuition

•  Idea: A concurrent object is linearizable if every
concurrent execution of its operations can be shown to
be “equivalent” to a sequential execution

lock() unlock()

lock() unlock()

Thread A

Thread B

duration of operation 1

duration of operation 2

time
Equivalent

sequential execution

invocation of operation 1 response of operation 1

31

Using the semantics of an object

•  Imagine an object implementing a FIFO queue with two
operations enq(x) and deq().

•  To decide whether a concurrent execution is correct, we
have to use the object’s intended semantics.

•  History H1 is acceptable, it agrees with the semantics.
•  History H2 is not acceptable: enq(2) was completed

before enq(5) started, so 5 couldn’t have been dequeued
earlier.

enq(2) 5 = deq()

enq(5)
Thread A

Thread B 2 = deq()

enq(2) 5 = deq()

enq(5)

Thread A

Thread B

H1

H2

32

Observation

•  Observation: Each operation should appear to “take
effect” instantaneously at some moment between its
invocation and response

•  For the second history, no equivalent sequential
execution can be found:

enq(2) 5 = deq()

enq(5)
Thread A

Thread B 2 = deq()

enq(2) 5 = deq()

enq(5)

Thread A

Thread B

H1

H2

time
Equivalent

sequential execution

33

Histories

•  A call of an operation is split into two events:
•  Invocation: [A q.op(a1, ..., an)]
•  Response: [A q:Ok(r)]

•  Notation:
•  A: thread ID
•  q: object
•  op(a1, ..., an): invocation of call with arguments
•  Ok(r): successfull response of call with result r

•  A history is a sequence of invocation and response events
•  Example: History H1 can be written as

 [A q.enq(2)], [B q.enq(5)], [B q:Ok], [A q:Ok],
 [B q.deq()], [B q:Ok(2)], [A q.deq()], [A q:Ok(5)]

34

Projections

•  We can define projections on objects and on threads
•  Assume we have a history
 H = [A q1.enq(2)], [B q2.enq(5)], [B q2:Ok], [A q1:Ok],

 [B q1.deq()], [B q1:Ok(2)], [A q2.deq()], [A q2:Ok(5)]

•  Object projection:
 H|q1 = [A q1.enq(2)], [A q1:Ok], [B q1.deq()], [B q1:Ok(2)]

•  Thread projection:
 H|A = [A q1.enq(2)], [A q1:Ok], [A q2.deq()], [A q2:Ok(5)]

35

Sequential histories

•  A response matches an invocation if their object and
thread names agree.

•  A history is sequential if it starts with an invocation and
each invocation, except possibly the last, is immediately
followed by a matching response

 H = [A q.enq(2)], [A q:Ok], [B q.enq(5)], [B q:Ok], ...

•  A sequential history is legal if it agrees with the

sequential specification of each object.

36

More definitions

•  A call op1 precedes another call op2 (op1 -> op2) if op1’s
response event occurs before op2’s invocation event

•  We write ->H for the precedence relation induced by H
•  Example: q.enq(2) -> q.enq(5) in history H
•  An invocation is pending if it has no matching response
•  A history is complete if it does not have pending

responses
•  complete(H) is the subhistory of H with all pending

invocations removed

37

Linearizability

•  Two histories H and G are equivalent if H|A = G|A for
all threads A

•  A history H is linearizable if it can be extended by
appending zero or more response events to a history G
such that:

•  complete(G) is equivalent to a legal sequential
history S

•  ->H ⊆ ->S
•  Example:

->H = {a -> c, b -> c}
->S = {a -> b, a -> c, b -> c}

a

b
Thread A

Thread B c
H

time S

38

Example: Linearizability

•  Read/write registers:

•  H is not linearizable
•  How about the next one?

•  H’ is linearizable

r.write(0)

r.write(1)
Thread A

Thread B 0 = r.read()
H

time S

1 = r.read() r.write(2)

r.write(1) must
have occurred
at this point

r.write(0)

r.write(1)
Thread A

Thread B 1 = r.read()
H’

time S

r.write(2)

39

Sequential consistency

•  A history H is sequentially consistent if it can be
extended by appending zero or more response events to
a history G such that:

•  complete(G) is equivalent to a legal sequential
history S

•  Idea: Calls from a particular thread appear to take
place in program order

•  H is not sequentially consistent:

•  H’ is sequentially consistent but not linearizable:

r.write(0) H 0 = r.read() r.write(2)

q.enq(2)

q.enq(5)

Thread A

Thread B

5 = q.deq()
H’

40

Compositionality

•  Every linearizable history is also sequentially consistent.
•  Linearizability is compositional: H is linearizable if and

only if for each object H|x is linearizable.
•  Sequential consistency on the other hand is not

compositional.

