ETHzürich

Concurrent Object-Oriented Programming

Bertrand Meyer, Sebastian Nanz

Lecture 9: An introduction to CSP

CSP: Origin

Communicating Sequential Processes: C.A.R. Hoare
1978 paper, based in part on ideas of E.W. Dijkstra (guarded commands, 1978 paper and "A Discipline of Programming" book)

Revised with help of S. D. Brooks and A.W. Roscoe
1985 book, revised 2004

Complete reference: The Theory and Practice of Concurrency, A. W. Roscoe, Prentice Hall 1997 (2005) (used extensively in the present slides)

CSP purpose

Concurrency formalism
> Expresses many concurrent situations elegantly
> Influenced design of several concurrent programming languages, in particular Occam (Transputer)
Calculus
> Formally specified: laws
> Makes it possible to prove properties of systems

A trace is a sequence of events, for example <coin, coffee, coin, coffee>

Many traces of interest are infinite, for example <coin, coffee, coin, coffee, ...>
(Can be defined formally, e.g by regular expressions, but such traces definition are not part of CSP; they are descriptions of CSP process properties.)

Events come from an alphabet. The alphabet of all possible events is written \sum in the following.

Processes and their traces

A CSP process is characterized (although not necessarily defined fully) by the set of its traces. For example a process may have the trace set

$$
\begin{aligned}
& \{<>, \\
& <\text { coin, coffee>, } \\
& <\text { coin, tea>\} }
\end{aligned}
$$

The special process STOP has a trace set consisting of a single, empty trace:
$\{<>\}$

Basic CSP syntax

P ::=
STOP | -- Does not engage in any events
$a \rightarrow Q \quad \mid-$ - Engages in a, then acts like Q
$Q \sqcap R \quad \mid \quad-$ Internal choice
$Q \square R \quad \mid \quad--$ External choice
$Q \|_{E} R \quad \mid--C o n c u r r e n c y$ (E: subset of alphabet)
$Q \| R \quad \mid$-- Lock-step concurrency (same as $Q \| R$)
$Q \backslash E \quad \mid \quad--H i d i n g$
$\mu Q \cdot f(Q) \quad--$ Recursion

Generalization of \rightarrow notation

Basic:

$$
a \rightarrow P
$$

Generalization:

$$
x: E \rightarrow P(x)
$$

Accepts any event from E, then executes $P(x)$ where x is that event

Also written

$$
? x: E \rightarrow P(x)
$$

Note that if E is empty then $x: E \rightarrow P(x)$ is STOP for any P

Some laws of concurrency

1. $P\|Q=Q\| P$
2. $(P \|(Q| | R))=((P| | Q) \| R)$
3. $P \| S T O P=S T O P$
4. $(c \rightarrow P) \|(c \rightarrow Q)=(c \rightarrow(P \| Q))$
5. $(c \rightarrow P) \|(d \rightarrow Q)=$ STOP $\quad-$ If $c \neq d$
6. $(x: A \rightarrow P(x)) \|(y: B \rightarrow Q(y))=$

$$
(z:(A \cap B) \rightarrow(P(z) \| Q(z))
$$

Basic notions

Processes engage in events
Example of basic notation:

$$
\text { CVM }=(\text { coin } \rightarrow \text { coffee } \rightarrow \text { coin } \rightarrow \text { coffee } \rightarrow \text { STOP })
$$

Right associativity: the above is an abbreviation for

$$
C V M=(\text { coin } \rightarrow(\text { coffee } \rightarrow(\text { coin } \rightarrow(\text { coffee } \rightarrow \text { STOP })))
$$

Trace set of CVM: \{<coin, coffee, coin, coffee>\}
The events of a process are taken from its alphabet: $\alpha($ CVM $)=\{$ coin, coffee $\}$

STOP can engage in no events

Traces

traces $(e \rightarrow P)=\{\langle e\rangle+s \quad \mid \quad s \in \operatorname{traces}(P)\}$

Exercises: determine traces

$P::=$
STOP | -- Does not engage in any events
$a \rightarrow Q \quad \mid-$ - Engages in a, then acts like Q
$Q \sqcap R \quad \mid \quad-$ Internal choice
$Q \square R \quad \mid \quad-$ External choice
$Q\left\|\|_{E} R \quad \mid--C o n c u r r e n c y\right.$ (E: subset of alphabet)
$Q \| R \quad \mid--$ Lock-step concurrency (same as $Q|\mid R$)
$Q \backslash E \quad \mid \quad--H i d i n g$
$\mu Q \bullet f(Q) \quad--$ Recursion

CLOCK $=($ tick \rightarrow CLOCK $)$
This is an abbreviation for

$$
\text { CLOCK }=\mu \mathrm{P} \bullet(\text { tick } \rightarrow \mathrm{P})
$$

A recursive definition is a fixpoint equation. The μ notation denotes the fixpoint

Accepting one of a set of events; channels

Basic notation:

$$
? x: A \rightarrow P(x)
$$

Accepts any event from A, then executes $P(x)$ where x is that event

Channel names
Example:

$$
? y: C . A \rightarrow d . y^{\prime}
$$

(where c.A denotes $\{c . x \mid x \in A\}$ and y^{\prime} denotes y deprived of its initial channel name, e.g. (c.a) $=a$)
More convenient notation for such cases involving channels:

$$
c ? x: A \rightarrow d!x
$$

COPY $=c ? x: A \rightarrow d!x \rightarrow$ COPY

External choice

$$
\begin{aligned}
\text { COPYBIT }= & (\text { in. } 0 \rightarrow \text { out. } 0 \rightarrow \text { COPYBIT } \\
& \square \\
& \text { in. } 1 \rightarrow \text { out. } 1 \rightarrow \text { COPYBIT })
\end{aligned}
$$

External choice

COPY1 $=$ in? $x: A \rightarrow$ out1! $x \rightarrow$ COPY1

COPY2 $=$ in? $x: B \rightarrow$ out2! $x \rightarrow$ COPY2

COPY3 = COPY1 \square COPY2

External choice

Consider

CHM1 $=($ in1f \rightarrow out50rp \rightarrow out20rp \rightarrow out20rp \rightarrow out10rp $)$
CHM2 $=$ (in1f \rightarrow out50rp \rightarrow out50rp)
$C H M=C H M 1 \square C H M 2$

Lock-step concurrency
Consider

$$
\begin{aligned}
P & =? x: A \rightarrow P^{\prime} \\
Q & =? x: B \rightarrow Q^{\prime}
\end{aligned}
$$

Then

$$
\begin{array}{rlrl}
P \| Q & =? x \rightarrow & \\
& >\left(P^{\prime} \| Q^{\prime}\right) & & \text { if } x \in A \cap B \\
& >S T O P & & \text { otherwise }
\end{array}
$$

(to be generalized soon)

More examples

VMC =
(in2f \rightarrow
((large \rightarrow VMC) \square
(small \rightarrow out1f \rightarrow VMC))
\square
(in1f \rightarrow
((small \rightarrow VMC) \square
(in1f \rightarrow large \rightarrow VMC) $)$

FOOLCUST $=($ in2 $f \rightarrow$ large \rightarrow FOOLCUST \square

$$
\text { in1f } \rightarrow \text { large } \rightarrow \text { FOOLCUST) }
$$

$F V=F O O L C U S T| | V M C=$
$\mu \mathrm{P} \bullet($ in $2 f \rightarrow$ large $\rightarrow P \square$ in1f \rightarrow STOP $)$

Hiding

Consider

$$
P=a \rightarrow b \rightarrow Q
$$

Assuming Q does not involve b, then

$$
P \backslash\{b\}=a \rightarrow Q
$$

More generally:

$$
\begin{aligned}
(a \rightarrow P) \backslash E & & & \\
& >P \backslash E & & \text { if } a \in E \\
& >a \rightarrow(P \backslash E) & & \text { if } a \notin E
\end{aligned}
$$

Hiding introduces internal non-determinism

Consider

$$
R \quad=(a \rightarrow P) \square(b \rightarrow Q)
$$

Then

$$
R \backslash\{a, b\}=P \sqcap Q
$$

Internal non-deterministic choice

CH1F $=$ (in1f \rightarrow

$$
\begin{aligned}
& ((\text { out } 20 r p \rightarrow \text { out } 20 r p \rightarrow \\
& \quad \text { out20rp } \rightarrow \text { out } 20 r p \rightarrow \text { out2Orp } \rightarrow \mathrm{CH} 1 F)
\end{aligned}
$$

$П$
(out50rp \rightarrow out50rp \rightarrow CH1F)))

Non-deterministic internal choice: another application

$$
\begin{aligned}
\operatorname{TRANSMIT}(x) & =\operatorname{in?x} \rightarrow \operatorname{LOSSY}(x) \\
\operatorname{LOSSY}(x) & = \\
& \quad \begin{array}{l}
\text { out }!x \rightarrow \operatorname{TRANSMIT}(x) \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\text { out }!x \rightarrow \operatorname{LRANSMIT}(x)
\end{array}
\end{aligned}
$$

The general concurrency operator
Consider

$$
\begin{aligned}
P & =? x: A \rightarrow P^{\prime} \\
Q & =? x: B \rightarrow Q^{\prime}
\end{aligned}
$$

Then

$$
\begin{array}{rlrl}
P \| Q & =? x \rightarrow \\
& >P^{\prime} \|_{E} Q^{\prime} & & \text { if } x \in E \cap A \cap B \\
& >P^{\prime} \|_{E} Q & & \text { if } x \in A-B-E \\
& >P \|_{E} Q^{\prime} & & \text { if } x \in B-A-E \\
& >\left(P^{\prime} \|_{E} Q\right) \sqcap\left(P \| Q_{E}^{\prime}\right) & & \text { if } x \in(A \cap B)-E
\end{array}
$$

Special cases of concurrency

Lock-step concurrency:

$$
P\|Q=P\| Q
$$

Interleaving:

$$
P\|Q=P\|_{\varnothing} Q
$$

Lock-step concurrency (reminder)

Consider

$$
\begin{aligned}
& P=? x: A \rightarrow P^{\prime} \\
& Q=? x: B \rightarrow Q^{\prime}
\end{aligned}
$$

Then

$$
\begin{aligned}
P \| Q & =? x \rightarrow & & \\
& >\left(P^{\prime} \| Q^{\prime}\right) & & \text { if } x \in E \cap A \cap B \\
& >S T O P & & \text { otherwise }
\end{aligned}
$$

Laws of non-deterministic internal choice

$P \sqcap P=P$
$P \sqcap Q=Q \Pi P$
$P \sqcap(Q \sqcap R)=(P \sqcap Q) \Pi R$
$x \rightarrow(P \sqcap Q)=(x \rightarrow P) \sqcap(x \rightarrow Q)$
$P \|(Q \sqcap R)=(P \| Q) \sqcap(P \| R)$
$(P \sqcap Q) \| R=(P \| R) \sqcap(Q| | R)$

The recursion operator is not distributive; consider:

$$
\begin{aligned}
& P=\mu X \bullet((a \rightarrow X) \Pi(b \rightarrow X)) \\
& Q=(\mu X \bullet(a \rightarrow X)) \Pi(\mu X \bullet(b \rightarrow X))
\end{aligned}
$$

From previous slide:

$$
x \rightarrow(P \sqcap Q)=(x \rightarrow P) \sqcap(x \rightarrow Q)
$$

The question was asked in class of whether a similar property also applies to external choice \square

The conjectured property is

$$
x \rightarrow(P \square Q)=(x \rightarrow P) \square(x \rightarrow Q)
$$

It does not hold, since

$$
(x \rightarrow P) \square(x \rightarrow Q)=x \rightarrow(P \sqcap Q)
$$

(As a consequence of rule on next page)

General property of external choice
$(? x: A \rightarrow P) \square(? x: B \rightarrow Q)=$
$? x: A \cup B \rightarrow$

$$
\begin{array}{ll}
>P & \text { if } x \in A-B \\
>Q & \text { if } x \in B-A \\
>P \sqcap Q & \text { if } x \in A \cap B
\end{array}
$$

Traces

traces $(e \rightarrow P)=\{\langle e\rangle+s \quad \mid \quad s \in \operatorname{traces}(P)\}$

Exercise: determine traces

P ::=
STOP | -- Does not engage in any events
$a \rightarrow Q \quad \mid-$ - Engages in a, then acts like Q
$Q \sqcap R \quad \mid \quad-$ Internal choice
$Q \square R \quad \mid \quad-$ External choice
$Q\left\|\|_{E} R \quad \mid--C o n c u r r e n c y\right.$ (E: subset of alphabet)
$Q \| R \quad \mid--$ Lock-step concurrency (same as $Q|\mid R$)
$Q \backslash E \quad \mid \quad--H i d i n g$
$\mu Q \bullet f(Q) \quad--$ Recursion

Refinement

Process Q refines (specifically, trace-refines) process P if
$\operatorname{traces}(Q) \subseteq \operatorname{traces}(P)$

For example:
P refines $P \sqcap Q$

The trace model is not enough

The traces of and are the same:

$$
\begin{aligned}
& \operatorname{traces}(P \square Q)=\operatorname{traces}(P) \cup \operatorname{traces}(Q) \\
& \operatorname{traces}(P \sqcap Q)=\operatorname{traces}(P) \cup \operatorname{traces}(Q)
\end{aligned}
$$

But the processes can behave differently if for example:

$$
\begin{array}{ll}
P & =a \rightarrow b \rightarrow \text { STOP } \\
Q & =b \rightarrow a \rightarrow \text { STOP }
\end{array}
$$

Traces define what a process may do, not what it may refuse to do

Refusals

For a process P and a trace t of P :
\Rightarrow An event set es $\in P(\Sigma)$ is a refusal set if P can forever refuse all events in es
> Refusals (P) is the set of P's refusal sets
> Convention: keep only maximal refusal sets (if X is a refusal set and $Y \subseteq X$, then Y is a refusal set)

This also leads to a notion of "failure":
$>$ Failures (P, t) is Refusals (P / t)
where P / t is Paftert:
$\operatorname{traces}(P / t)=\{u \mid t+u \in \operatorname{traces}(P))$

Comparing failures

Compare

$$
\begin{aligned}
& >P=a \rightarrow \text { STOP } \square b \rightarrow \text { STOP } \\
& >Q=a \rightarrow \text { STOP } \square b \rightarrow \text { STOP }
\end{aligned}
$$

Same traces, but:
> Refusals $(P)=\varnothing$
> Refusals $(Q)=\{\{a\},\{b\}\}$

Refusal sets (from labeled transition diagram)

A more complete notion of refinement
Process Q failures-refines process P if both

$$
\begin{aligned}
& \text { traces }(Q) \subseteq \text { traces }(P) \\
& \text { failures }(Q) \subseteq \text { failures }(P)
\end{aligned}
$$

Makes it possible to distinguish between \square and Π

Divergence

A process diverges if it is not refusing all events but not communicating with the environment

This happens if a process can engage in an infinite sequence of τ transitions

An example of diverging process:

$$
(\mu \text { p.a } \rightarrow \text { p }) \backslash a
$$

The divergence model (Brookes, Roscoe)

CSP semantics is often expressed through a failures se \dagger A failure is of the form

$$
[s, X]
$$

where s is a trace (sequence of events) and X a finite set of events
A failure set must satisfy the following properties:

$$
\begin{aligned}
& >[\langle \rangle, \varnothing] \in F \\
& >[s++, \varnothing] \in F \Rightarrow[s, \varnothing] \in F \\
& >[s, X] \in F \wedge Y \subseteq X \Rightarrow[s, Y] \in F \\
& >[s, X] \in F \wedge[s+\langle c\rangle, \varnothing] \notin F \Rightarrow[s, X \cup\{c\}] \in F
\end{aligned}
$$

Basic CSP syntax

P ::=
STOP | -- Does not engage in any events
$a \rightarrow Q \quad \mid-$ - Engages in a, then acts like Q
$Q \sqcap R \quad \mid \quad-$ Internal choice
$Q \square R \quad \mid \quad--$ External choice
$Q \|_{E} R \quad \mid--C o n c u r r e n c y$ (E: subset of alphabet)
$Q \| R \quad \mid \quad-$ Lock-step concurrency (same as $Q \| R$)
$Q \backslash E \quad \mid \quad--H i d i n g$
$\mu Q \cdot f(Q) \quad-$ Recursion

CSP laws in the divergence model (1/2)

$$
\begin{aligned}
P \square P & \equiv_{M} P \\
P \square Q & \equiv_{M} Q \square P \\
P \square(Q \square R) & \equiv_{M}(P \square Q) \square R \\
P \square(Q \sqcap R) & \equiv_{M}(P \square Q) \sqcap(P \square R) \\
P \sqcap(Q \square R) & \equiv_{M}(P \sqcap Q) \square(P \sqcap R) \\
P \square \mathrm{STOP} & \equiv_{M} P \\
(a \rightarrow(P \sqcap Q)) & \equiv_{M}(a \rightarrow P) \sqcap(a \rightarrow Q) \\
(a \rightarrow P) \square(a \rightarrow Q) & \equiv_{M}(a \rightarrow P) \sqcap(a \rightarrow Q) \\
P \sqcap P & \equiv_{M} P \\
P \sqcap Q & \equiv_{M} Q \sqcap P \\
P \sqcap(Q \sqcap R) & \equiv_{M}(P \sqcap Q) \sqcap R \\
P \| Q & \equiv_{M} Q \| P \\
P \|(Q \| R) & \equiv_{M}(P \| Q) \| R \\
P \|(Q \sqcap R) & \equiv_{M}(P \| Q) \sqcap(P \| R) \\
(a \rightarrow P) \|(b \rightarrow Q) & \equiv_{M} \operatorname{STOP} \quad \text { if } a \neq b \\
& \equiv_{M}(a \rightarrow(P \| Q) \text { if } a=b \\
P \| S T O P & \equiv_{M} \operatorname{STOP}
\end{aligned}
$$

(From: Brooks \& Roscoe 85)

$$
\begin{aligned}
P \| Q & \equiv_{M} Q \| P \\
(P \| Q) \| R & \equiv_{M} P \|(Q \| R) \\
P \|(Q \sqcap R) & \equiv_{M}(P \| Q) \cap(P \| R) \\
(a \rightarrow P) \|(b \rightarrow Q) & \equiv_{M}(a \rightarrow(P \|(b \rightarrow Q))) \square(b \rightarrow((a \rightarrow P) \| Q)) \\
P ;(Q ; R) & \equiv_{M}(P ; Q) ; R \\
\text { STOP\|\|Q} & \equiv_{M} Q \\
\text { SKIP; } Q & \equiv_{M} Q \\
\text { STOP;Q } & \equiv_{M} \text { STOP } \\
P ;(Q \sqcap R) & \equiv_{M}(P ; Q) \cap(P ; R) \\
(P \sqcap Q) ; R & \equiv_{M}(P ; R) \sqcap(Q ; R) \\
(a \rightarrow P) ; Q & \equiv_{M}(a \rightarrow P ; Q) \quad \text { if } a \neq \sqrt{ } \\
(P \backslash a) \backslash b & \equiv_{M}(P \backslash b) \backslash a \\
(P \backslash a) \backslash a & \equiv_{M} P \backslash a \\
(a \rightarrow P) \backslash b & \equiv_{M}(a \rightarrow P \backslash b) \quad \text { if } a \neq b \\
& \equiv_{M} P \backslash b \\
(P \sqcap Q) \backslash a & \equiv_{M}(P \backslash a) \sqcap(Q \backslash a)
\end{aligned}
$$

Some extensions

Non-timed:
> The \checkmark event (not in Σ): successful termination
> Skip: successfully terminates
> Sequential composition: P; Q
$>\perp$: diverging process
Timed:
> P : interrupt
> $P \stackrel{\perp}{*}^{+}$: timeout
$>a \stackrel{!}{\rightarrow} P:$ communicate immediately
> WAIT t: same as STOP ${ }^{ \pm}$SKIP

Example (Ouaknine)

$\mathrm{V} 1=$ coin.in \rightarrow

$$
((\text { coke } \rightarrow \mathrm{V} 1) \square(\text { fanta } \rightarrow \mathrm{V} 1)) \stackrel{60}{\triangleright}(\text { coin.out } \stackrel{!}{\rightarrow} \mathrm{V} 1)
$$

Some laws no longer hold

$$
\begin{aligned}
& P \| S T O P=S T O P \text { if } P \neq \perp \\
& \perp \| S T O P=\perp \\
& (a \rightarrow P) \backslash b=a \rightarrow(P \backslash b) \text { if } a \neq b \\
& (a \rightarrow P) \backslash a=P \backslash a
\end{aligned}
$$

CSP: Summary

A calculus based on mathematical laws

Provides a general model of computation based on communication

Serves both as specification of concurrent systems and as a guide to implementation

One of the most influential models for concurrency work

