CHESS or
“How to track Heisenbugs”

Presentation of:
Finding and reproducing Heisenbugs in concurrent programs

Authors:

Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler,
Piramanayagam Arumuga Nainar, and Iulian Neamtiu

2008 - In Proceedings of the 8th USENIX conference on Operating
systems design and implementation (OSDI'08). USENIX Association,
Berkeley, CA, USA, 267-280.

By: Mathias Durrenberger

What is a Heisenbug ?

Werner Karl Heisenberg (5 Dec 1901 - 1 Feb 1976)
Uncertainty principle
The bug disappears when we try to debug the code

What is a Heisenbug ?

The bug only appears when compiler optimizations are
enabled

Multithreaded systems: occasional/rare race conditions -
thread scheduling is essentially nhon-deteministic

Big productivity issue (it can take weeks to find one)

And often huge associated risks too

Why Heisebugs matter

Failure of real time systems can have catastrophic
consequences !

Nuclear power plant

Engine control systems

Driving assistance (break control, traction control, ...)
Locomotive control systems

etc

How does CHESS work ?

Take full control of scheduling of threads and of
asynchronous events

Capture interleaving nondeterminism of program with a
Lamport happens-before graph

Reduce state space
Drives program through possible thread interleavings

CHESS Architecture

Unmanaged / Concurrency \

Program Analysis
Monitors

" CHESS
Exploration
. Engine

-
Y CHESS

& Scheduler j/

Managed
Program

* Every run takes a different interleaving
NET * Reproduce the interleaving for every run

Wrappers

Source: Microsoft 6

How CHESS interacts

Win32: DLL-shimming (overwriting the import address
table of the program under test)

.Net: extended CLR profiler
Singularity: static IL rewriter

Consider sub-components with complex API as part of
application under test

Wrappers

Must understand

[Program under test}

semantics

Win32

+

ubcomponent

| with complex API

- wrap it or not ?

Wrappers

Is part of
tested system

Main idea: replace the
scheduler

Basic functions of CHESS scheduler: playback and

monitor
Playback from trace file

Launc

h a thread

Record events during time slice of a thread into trace file

One step further: generate a new thread

Inter

eaving

Use the recorded information to find an interesting next

sched

ule in a smart way (called: search)

This is an iterative process

Record

Disturb system under test as little as possible

We do not want to change the real time behavior in a
significant way

Must understand the semantics of concurrent API's

Monitor concurrency primitives: EnterCriticalSection,
ReleaseCriticalSection, CreateThread,
QueueUserWorkItem, CreateTimerQueueTimer,
asynchronous file I/O,

10

Example

/ - Thread1l

EnterCriticalSection{()
// Access shared resource
LeaveCriticalSection();

N

4

Thread is
not switched

/ Thread 2 \

SleepEx ()

Thread is
switched

11

Control flow model

Current executing task

Map of resource handles to synchronization variables
Set of enabled tasks

Set of threads waiting on each synchronization variable
Determine if call switches thread

Determine if call yields new task/terminates task

12

Does CHESS deliver ?

Failure of a nightly test run (after many month's of
successes)

Isolate offending unit (comment out the rest in test
harness) => 30 minutes

Running under CHESS => 20 seconds to discover a
deadlock

Run code in standard debugger, with the offending
schedule being driven by CHESS

Several other projects where CHESS has been used
successfully within Microsoft

13

Concluding remarks

The direction is right, it's a promising approach
But does it target the platform that matters ?

Win32 has a bad reputation as real time platform (I.e.
interrupt latency)

What about Linux and other industrial real time OS’'s ?

Porting is rather complex (Win32: 134 lib’s with 2512
functions, .net: 64 lib’s with 1270 functions)

14

Example:
EnterCriticalSection

Can block (switch the thread) or immediately acquire
the resource

Emulate call with combination of:
TryEnterCriticalSection and
EnterCriticalSection

Record outcome in “operation” value
Update control flow model

If “try” fails, add current task to set of taks waiting on
that resource, remove from set of enabled tasks

When released, move all tasks from waiting set to
enabled set

15

Model of concurrent
interactions

Lamport: happens-before graph, use to model relative
execution order of threads

Node := (task, synchronization variable, operation)
Task :- { thread, threadpool work item, asynchronous
callback, timer callback }

Synchronization variable :- { lock, semaphores, atomic
variables accessed, queues }

Operation :- [isWrite (changes state of resource),
iIsSRelease (unlocks tasks waiting on that resource)]

16

Summary: graph node

Task: take current executing task

Synchronization variable: get from resource handle map
Operation: get from call semantics/analysis
Advantage: is robust by design and fault tolerant

17

And the edges ?

They are built, based on analysis of inter-thread
communication

Operation: isWrite, isRelease (from contents of node)

Can this call disable the current task ? I.e. result in a
thread switch ?

Requires to model the control flow among threads
Understanding of call semantics needed

18

CHESS scheduler

Iterate on: replay, record, search
replay: redo a previous path

record: behave as fair, nonpreemptive scheduler, let
thread run until it yields control, process graph

search: systematically enumerate possible thread
interleavings, come up with an interesting schedule

Problem: how to reduce state space ?

Reduce state space

Bound number of preemptions: three is enough to find
almost any bug

Scope preemptions: exclude standard libraries (I.e. C
run time)

Only use preemption at very specific places (when
accessing shared variables)

20

Further readings

Additional materials:

http://research.microsoft.com/en-us/projects/chess/
Can be downloaded for MS Visual Studio 2008

21

References

LAMPORT, L. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM 21,7 (1978), 558-565.

LU, S., PARK, S., SEO, E., AND ZHOU, Y. Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics. In
ASPLOS 08: Architectural Support for Programming Languages and
Operating Systems (2008).

MUSUVATHI, M., AND QADEER, S. Iterative context bounding for
systematic testing of multithreaded programs. In PLDIO7: Programming
Language Design and Implementation (2007), pp. 446—455.

22

