
1

CHESS or

“How to track Heisenbugs”

Presentation of:

Finding and reproducing Heisenbugs in concurrent programs

Authors:

Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler,
Piramanayagam Arumuga Nainar, and Iulian Neamtiu

2008 - In Proceedings of the 8th USENIX conference on Operating
systems design and implementation (OSDI'08). USENIX Association,
Berkeley, CA, USA, 267-280.

By: Mathias Dürrenberger

2

What is a Heisenbug ?

z Werner Karl Heisenberg (5 Dec 1901 - 1 Feb 1976)

z Uncertainty principle

z The bug disappears when we try to debug the code

3

What is a Heisenbug ?

z The bug only appears when compiler optimizations are
enabled

z Multithreaded systems: occasional/rare race conditions -
thread scheduling is essentially non-deteministic

èBig productivity issue (it can take weeks to find one)

èAnd often huge associated risks too

4

Why Heisebugs matter

z Failure of real time systems can have catastrophic
consequences !

è Nuclear power plant

è Engine control systems

è Driving assistance (break control, traction control, ...)

è Locomotive control systems

è etc

5

How does CHESS work ?

z Take full control of scheduling of threads and of

asynchronous events

z Capture interleaving nondeterminism of program with a
Lamport happens-before graph

z Reduce state space

z Drives program through possible thread interleavings

Source: Microsoft 6

Unmanaged

Program

Unmanaged

Program

CHESS Architecture

CHESS

Scheduler

CHESS

Scheduler

Unmanaged

Program

Unmanaged

Program

WindowsWindows

Managed

Program

Managed

Program

CLRCLR

• Every run takes a different interleaving

• Reproduce the interleaving for every run

CHESS

Exploration

Engine

CHESS

Exploration

Engine

Win32

 Wrappers

.NET

 Wrappers

Concurrency

Analysis

Monitors

Concurrency

Analysis

Monitors

7

How CHESS interacts

z Win32: DLL-shimming (overwriting the import address
table of the program under test)

z .Net: extended CLR profiler

z Singularity: static IL rewriter

z Consider sub-components with complex API as part of
application under test

8

Wrappers

Program under testProgram under test

WindowsWindows

Win32

 Wrappers

Subcomponent

with complex API

- wrap it or not ?

Is part of
tested system

Must understand
semantics

9

Main idea: replace the

scheduler

Basic functions of CHESS scheduler: playback and
monitor

z Playback from trace file

z Launch a thread

z Record events during time slice of a thread into trace file

One step further: generate a new thread
interleaving

z Use the recorded information to find an interesting next
schedule in a smart way (called: search)

z This is an iterative process

10

Record

z Disturb system under test as little as possible

z We do not want to change the real time behavior in a
significant way

z Must understand the semantics of concurrent API's

z Monitor concurrency primitives: EnterCriticalSection,
ReleaseCriticalSection, CreateThread,

QueueUserWorkItem, CreateTimerQueueTimer,

asynchronous file I/O, ...

11

Example

...

EnterCriticalSection()

// Access shared resource

LeaveCriticalSection();

...

...

EnterCriticalSection()

// Access shared resource

LeaveCriticalSection();

...

Thread 1Thread 1

...

SleepEx()

...

...

SleepEx()

...

Thread 2Thread 2

Thread is
not switched

Thread is
switched

12

Control flow model

z Current executing task

z Map of resource handles to synchronization variables

z Set of enabled tasks

z Set of threads waiting on each synchronization variable

è Determine if call switches thread

è Determine if call yields new task/terminates task

13

Does CHESS deliver ?

z Failure of a nightly test run (after many month's of
successes)

è Isolate offending unit (comment out the rest in test
harness) => 30 minutes

è Running under CHESS => 20 seconds to discover a
deadlock

è Run code in standard debugger, with the offending
schedule being driven by CHESS

z Several other projects where CHESS has been used
successfully within Microsoft

14

Concluding remarks

z The direction is right, it’s a promising approach

z But does it target the platform that matters ?

z Win32 has a bad reputation as real time platform (I.e.
interrupt latency)

z What about Linux and other industrial real time OS’s ?

z Porting is rather complex (Win32: 134 lib’s with 2512
functions, .net: 64 lib’s with 1270 functions)

15

Example:
EnterCriticalSection

z Can block (switch the thread) or immediately acquire
the resource

è Emulate call with combination of:
TryEnterCriticalSection and
EnterCriticalSection

z Record outcome in “operation” value

z Update control flow model

è If “try” fails, add current task to set of taks waiting on
that resource, remove from set of enabled tasks

è When released, move all tasks from waiting set to
enabled set

16

Model of concurrent

interactions

z Lamport: happens-before graph, use to model relative
execution order of threads

z Node := (task, synchronization variable, operation)

z Task :- { thread, threadpool work item, asynchronous
callback, timer callback }

z Synchronization variable :- { lock, semaphores, atomic
variables accessed, queues }

z Operation :- [isWrite (changes state of resource),
isRelease (unlocks tasks waiting on that resource)]

17

Summary: graph node

z Task: take current executing task

z Synchronization variable: get from resource handle map

z Operation: get from call semantics/analysis

z Advantage: is robust by design and fault tolerant

18

And the edges ?

z They are built, based on analysis of inter-thread
communication

z Operation: isWrite, isRelease (from contents of node)

z Can this call disable the current task ? I.e. result in a
thread switch ?

z Requires to model the control flow among threads

z Understanding of call semantics needed

19

CHESS scheduler

z Iterate on: replay, record, search

z replay: redo a previous path

z record: behave as fair, nonpreemptive scheduler, let
thread run until it yields control, process graph

z search: systematically enumerate possible thread
interleavings, come up with an interesting schedule

è Problem: how to reduce state space ?

20

Reduce state space

z Bound number of preemptions: three is enough to find
almost any bug

z Scope preemptions: exclude standard libraries (I.e. C
run time)

z Only use preemption at very specific places (when
accessing shared variables)

21

Further readings

Additional materials:

http://research.microsoft.com/en-us/projects/chess/

Can be downloaded for MS Visual Studio 2008

22

References

z LAMPORT, L. Time, clocks, and the ordering of events in a distributed

system. Communications of the ACM 21, 7 (1978), 558–565.

z LU, S., PARK, S., SEO, E., AND ZHOU, Y. Learning from mistakes: a

comprehensive study on real world concurrency bug characteristics. In

ASPLOS 08: Architectural Support for Programming Languages and

Operating Systems (2008).

z MUSUVATHI, M., AND QADEER, S. Iterative context bounding for

systematic testing of multithreaded programs. In PLDI07: Programming

Language Design and Implementation (2007), pp. 446–455.

