
The multikernel
A new OS architecture for scalable multicore systems

Baumann, Barham et al.

Claudio Gargiulo
gargiulo.claudio@gmail.com



Monolithic OS

� Shared memory

� Supports different types of hardware

� Most of the OS layers run in kernel-mode

� OS state shared between cores

� Hardware-specific synchronization scheme

2



Monolithic OS: problems

� Hard to upgrade

� Not optimized for specific hardware

� Shared memory costs more than message passing

3



Shared memory vs. message passing
� Message cost for routing and bus congestion:

� Higher cost for shared memory

4



Proposed approach: the multikernel model

� Key features:
� Hardware neutrality

� Replicated OS state

� Message passing for inter-core communication

� Reuse of distributed systems optimizations
� event-based communication 

5



The multikernel: structure

6



The multikernel: hardware neutrality

� Communication algorithms 

must be efficient

� Multikernel model:
� Late binding of protocol 

implementation and message 
transport

� Message transport optimized

� Message-based algorithms 
hardware independent

7



The multikernel: replicated OS state

� Consistency maintained 

due to messages

� Bring data near the cores

� Improve scalability

� Ability to support 

hotplugging of cores

8



Barrelfish: a multikernel implementation

� The Barrelfish’s multikernel model:
� Idealist � platform-specific optimizations may be sacrified

� Support for multiple agreement protocols for consistency

� Main goals:
� Comparable performance of commodity OS

� Support different hardware and different sharing mechanism

� Good performance of message passing model

� Develop a modular OS

9



Barrelfish: main structure

10



Barrelfish: CPU driver

� Enforces protection, authorization and mediation for 

accessing the core

� Performs dispatch and messaging within local processes

� Asynchronous and synchronous communication 

mechanisms

� No OS state shared with other cores
� Single threaded

� Event-driven

� Non-preemptable

� Easy to debug

11



Barrelfish: monitors

� Coordinate system-wide state

� Block and wake up local processes

� Work at user-space level
� Schedulable!

� Long-running remote operations

� Coordination by using agreement protocol

12



Barrelfish: process structure

� Every process as a group of dispatchers
� One dispatcher per core

� Communication between dispatchers

� Dispatchers scheduled by the CPU driver

� Threads package similar to POSIX threads

13



Barrelfish: Inter-core communication

� Communication with cache-coherent memory

� Implementation tailored to minimize the number of 

interconnect messages

� Reception of URPC made by polling memory

� Optimized due to:
� pipelining

� prefetching instructions

14



Barrelfish: memory management

� The allocation of the memory must be consistent
� A user process can access an assigned memory region

� Tracking of ownership by using capabilities
� Memory management performed through system calls

� VM management made by user-level code

� CPU driver only checks the capabilities

� Decentralized memory management for achieving higher scalability

15



Barrelfish: shared address space

� can be achived by sharing a hardware page table among 

the dispatchers
� Highly efficient

� or by replicating hardware page table
� Reduce TLB invalidations

� Support different page table formats

16



Barrelfish: Unmap latency test

17



Barrelfish: IP loopback performances 

18



Conclusions

� Higher scale of parallelism

� Each core managed independently

� SHM model not effective for large-scale multiprocessors

� Not a real heterogeneous environment is supported

� Model can be applied in one or between many machines

� Future works
� A declarative language approach to device configuration

� AC: Composable Asynchronous IO for Native Languages

19


