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Monolithic OS

= Shared memory

= Supports different types of hardware

= Most of the OS layers run in kernel-mode

= (OS state shared between cores

= Hardware-specific synchronization scheme
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Monolithic OS: problems

= Hard to upgrade
= Not optimized for specific hardware
= Shared memory costs more than message passing
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Shared memory vs. message passing

= Message cost for routing and bus congestion:
Higher cost for shared memory
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Proposed approach: the multikernel model

= Key features:
Hardware neutrality
Replicated OS state

Message passing for inter-core communication

Reuse of distributed systems optimizations
event-based communication
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The multikernel: structure
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The multikernel: hardware neutrality
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The multikernel: replicated OS state
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Barrelfish: a multikernel implementation

= The Barrelfish’s multikernel model:

|dealist = platform-specific optimizations may be sacrified
Support for multiple agreement protocols for consistency

= Main goals:
Comparable performance of commodity OS
Support different hardware and different sharing mechanism

Good performance of message passing model
Develop a modular OS
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Barrelfish: main structure
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Barrelfish: CPU driver

= Enforces protection, authorization and mediation for
accessing the core

= Performs dispatch and messaging within local processes

= Asynchronous and synchronous communication
mechanisms

= No OS state shared with other cores
Single threaded
Event-driven
Non-preemptable
Easy to debug
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Barrelfish: monitors

= (Coordinate system-wide state
= Block and wake up local processes

= Work at user-space level
Schedulable!
Long-running remote operations

= Coordination by using agreement protocol



Barrelfish: process structure

= Every process as a group of dispatchers
One dispatcher per core
Communication between dispatchers
Dispatchers scheduled by the CPU driver

= Threads package similar to POSIX threads



Barrelfish: Inter-core communication

= Communication with cache-coherent memory

= |mplementation tailored to minimize the number of
Interconnect messages
= Reception of URPC made by polling memory
= Optimized due to:
pipelining
prefetching instructions
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Barrelfish: memory management

= The allocation of the memory must be consistent
A user process can access an assigned memory region

= Tracking of ownership by using capabilities
Memory management performed through system calls
VM management made by user-level code
CPU driver only checks the capabilities
Decentralized memory management for achieving higher scalability



Barrelfish: shared address space

= can be achived by sharing a hardware page table among

the dispatchers
Highly efficient

= or by replicating hardware page table
Reduce TLB invalidations
Support different page table formats
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Barrelfish: Unmap latency test
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Barrelfish: IP loopback performances

Barrelfish  Linux
Throughput (Mbit/s) 2154 1823
Dcache misses per packet 21 f
source — sink HT traffic” per packet 467 657
sink — source HT traffic” per packet 188 550
source — sink HT link utilization 8% 11%
sink — source HT link utilization 3% 9%

" HyperTransport traffic is measured in 32-bit dwords.
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Conclusions

= Higher scale of parallelism

= Each core managed independently

= SHM model not effective for large-scale multiprocessors
= Not a real heterogeneous environment is supported

= Model can be applied in one or between many machines

= Future works
A declarative language approach to device configuration
AC: Composable Asynchronous IO for Native Languages



