ETH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

The multikernel
A new OS architecture for scalable multicore systems

Baumann, Barham et al.

i - - MEAEER Claudio Gargiulo

—pme———gargiulo.claudio@gmail.com

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Monolithic OS

= Shared memory

= Supports different types of hardware

= Most of the OS layers run in kernel-mode

= (OS state shared between cores

= Hardware-specific synchronization scheme

|
ETH DMUST

Department of Muster
Eidgendssische Technische Hochschule Zirich SecF:)nd row
Swiss Federal Institute of Technology Zurich

Monolithic OS: problems

= Hard to upgrade
= Not optimized for specific hardware
= Shared memory costs more than message passing

ETH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Shared memory vs. message passing

= Message cost for routing and bus congestion:
Higher cost for shared memory

12 1 1 I I] I A
SHM8 ----&--- y —
SHM4 ---g--- v
SHM2 ---¢--- e

10 SHM1 --—4--- s)
MSG8 —~—

MSG1 —a— o
Server —e—

Latency (cycles x 1000)

ETH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Proposed approach: the multikernel model

= Key features:
Hardware neutrality
Replicated OS state

Message passing for inter-core communication

Reuse of distributed systems optimizations
event-based communication

ETH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

The multikernel: structure

App App App App

Arch-specific
code

-
: OS node OS node OS node OS node
Agreement , I\
algorithms 1 State State State Async messages State
: replica replica replica [/ replica
1
|
1
1

Heterogeneous

e x64 ARM oo

x86

< Interconnect

ETH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

The multikernel: hardware neutrality

App App App App

= Communication algorithms S St e Sn Tl
must be efficient — |

OS node OS node OS node OS node
algorithms 1 State State State <@ State
11| replica replica replica replica

= Multikernel model: '

Late binding of protocol . :--T--- ----------------------- ?

Implementation and message trogencous [s | [v -

cores

transport < E— >
Message transport optimized

Message-based algorithms
hardware independent

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

The multikernel: replicated OS state

App App App App

= Consistency maintained I U A | - I

due to messages e | (e)
= Bring data near the cores '

* Improve scalability " e -

= Ability to support < : >
hotplugging of cores

==1

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Barrelfish: a multikernel implementation

= The Barrelfish’s multikernel model:

|dealist = platform-specific optimizations may be sacrified
Support for multiple agreement protocols for consistency

= Main goals:
Comparable performance of commodity OS
Support different hardware and different sharing mechanism

Good performance of message passing model
Develop a modular OS

ETH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Barrelfish: main structure

App
space: ' Monitor
I- Il I B = .
Kernel CPU
space: driver
. x86-64
Hardware: CPU / APIC
MMU

App

App App
Monitor
GRU
driver Send IPI —
x86-64
CPU/APIC| —— =
MMU Cache-coherence,

Interrupts

Monitor

CPU
driver
x86-64

CPU/APIC
MMU

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Barrelfish: CPU driver

= Enforces protection, authorization and mediation for
accessing the core

= Performs dispatch and messaging within local processes

= Asynchronous and synchronous communication
mechanisms

= No OS state shared with other cores
Single threaded
Event-driven
Non-preemptable
Easy to debug

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Barrelfish: monitors

= (Coordinate system-wide state
= Block and wake up local processes

= Work at user-space level
Schedulable!
Long-running remote operations

= Coordination by using agreement protocol

Barrelfish: process structure

= Every process as a group of dispatchers
One dispatcher per core
Communication between dispatchers
Dispatchers scheduled by the CPU driver

= Threads package similar to POSIX threads

Barrelfish: Inter-core communication

= Communication with cache-coherent memory

= |mplementation tailored to minimize the number of
Interconnect messages
= Reception of URPC made by polling memory
= Optimized due to:
pipelining
prefetching instructions

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Barrelfish: memory management

= The allocation of the memory must be consistent
A user process can access an assigned memory region

= Tracking of ownership by using capabilities
Memory management performed through system calls
VM management made by user-level code
CPU driver only checks the capabilities
Decentralized memory management for achieving higher scalability

Barrelfish: shared address space

= can be achived by sharing a hardware page table among

the dispatchers
Highly efficient

= or by replicating hardware page table
Reduce TLB invalidations
Support different page table formats

ETH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Barrelfish: Unmap latency test

60

I I 1 I I I 1 I I I

'Windows --%---
Barrelfish —+—

Latency (cycles x 1000)

1 1 1 1 1 1 1 1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Cores

ETH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Barrelfish: IP loopback performances

Barrelfish Linux
Throughput (Mbit/s) 2154 1823
Dcache misses per packet 21 f
source — sink HT traffic” per packet 467 657
sink — source HT traffic” per packet 188 550
source — sink HT link utilization 8% 11%
sink — source HT link utilization 3% 9%

" HyperTransport traffic is measured in 32-bit dwords.

ETH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Conclusions

= Higher scale of parallelism

= Each core managed independently

= SHM model not effective for large-scale multiprocessors
= Not a real heterogeneous environment is supported

= Model can be applied in one or between many machines

= Future works
A declarative language approach to device configuration
AC: Composable Asynchronous IO for Native Languages

