
Modeling Behavioral Design Patterns of
Concurrent Objects

Hassan Gomaa

Dept. of Computer Science
George Mason University

Fairfax, Virginia,
USA

hgomaa@gmu.edu

Joint research conducted with Dr. Robert Pettit

Overview

• Goals
– Provide executable behavioral analysis capabilitiesProvide executable behavioral analysis capabilities

• For concurrent object-oriented software
architectures

• At design stage
• Concurrent software architectures are depicted in UML

C l d P i (CPN) d d l i f li• Colored Petri nets (CPNs) used as underlying formalism
• CPN templates created to model executable behavioral

design patternsdesign patterns
– Promotes systematic, repeatable model construction

2

Modeling Executable Software Architectures

• Design and analyze concurrent software architecture
• Behavioral design patternsg p

– Concurrent component
– Connector
– Mapped to Colored Petri Net template

• Map concurrent software architecture to CPN model
S l t d i t t CPN t l t f– Select and interconnect CPN templates for
components and connectors

• Analyze executable CPN modelAnalyze executable CPN model
– Application behavior
– Application performance

3

• R. Pettit and H. Gomaa, “Modeling Behavioral Design Patterns of Concurrent
Objects”, Proc. Int. Conf. on Software Eng. (ICSE), Shanghai, May 2006.

Using Behavioral Design Patterns

• Start with software design captured in UML
– Depicted on UML 2 communication diagramsDepicted on UML 2 communication diagrams

• Structure concurrent system into concurrent objects
– Categorize concurrent objects by behavioral roleg j y
– Each concurrent object is represented by behavioral

design pattern
M d t CPN t l t– Mapped to CPN template

4

Software Modeling and Design
for Concurrent Systems

• COMET design method
– From Use Case Models to Software

Architecture
– COMET = method + UML
– Requirements and Analysis ModelingRequirements and Analysis Modeling

• Use case modeling
• Static and Dynamic modeling

– Design modeling
• Concurrent, distributed, and real-time

applicationsapplications
– H. Gomaa, “Designing Concurrent, Distributed, and

Real-Time Applications with UML”, Addison Wesley
Object Technology Series, 2000

5

j gy ,
– H. Gomaa, Software Modeling and Design:

UML, Use Cases, Patterns, and Software Architectures,
Cambridge University Press, February 2011

Concurrent and Passive Objects
• Concurrent system consists of concurrent

objects and passive objects
• Concurrent object UML notationj

– Has a thread of control
– Executes autonomously
– Also known asAlso known as

• Active object
• Concurrent process (lightweight)
• Concurrent taskConcurrent task
• Concurrent component
• Thread (Java)
• Processor (Scoop)• Processor (Scoop)

• Passive object
– Has no thread of control

Also known as

6

– Also known as
• Sequential object
• Object

Structure and Categorize
Concurrent Objects

• Use COMET structuring criteria to categorize concurrent objects
– Each concurrent object depicted using UML stereotype
– Specify architectural parameters for each concurrent object
– Identify concurrent object behavioral design pattern

«application»

«I/O» «entity» «control» «algorithm»
{execution =async |

periodic} {execution =async |
periodic}

{execution =passive}
{exclusion = single-read |

«coordinator» «timer»«state dependent»

{IO = In | Out | InOut}
periodic} multi-read}

7

«coordinator» «timer»«state dependent»

{execution = periodic}{execution =async}{execution =async |
periodic}

UML Notation for Messages

8

Asynchronous I/O Concurrent Object
(Component/task/thread)(p)

One concurrent object for each asynchronous I/O device
Activated by device interruptActivated by device interrupt
Reads input
Converts to internal format
Sends message containing data
Waits for next interrupt

1: doorInterrupt

Figure 14.1b Design model – UML concurrent communication diagram

«asynchronous input»
: DoorSensorInterface

: Microwave
Control

«asynchronous
input device»
: DoorSensor

1: doorInterrupt
(doorInput) 2: doorRequest

9Hardware / software boundary

Classical Petri Nets

• Simple concurrency model
– Just three elements: places transitions andJust three elements: places, transitions and

arcs.
– Graphical and mathematical description.

F l ti d ll f l i– Formal semantics and allows for analysis.
• History:

– Carl Adam Petri (1962, PhD thesis)Carl Adam Petri (1962, PhD thesis)
– In sixties and seventies focus mainly on theory.
– Since eighties also focus on tools and applications

(f C l d P t i N t k b K t J)(cf. Colored Petri Net work by Kurt Jensen).

• Source: Intro to Petri Nets, Wil van der Aalst

10

Source: Intro to Petri Nets, Wil van der Aalst

Petri Net Elements p4
place

(name)

t34 t43

p3

transition

place

t23 t32

(name) transition

t23 t32

p2

token

arc (directed connection)

token
t12 t21

p1

t01 t10

Source: Intro to Petri Nets,
Wil van der Aalst

11

t01 t10

p0

Wil van der Aalst

Petri Net Rules
free

wait enter before make_picture after leave gone

occupied

• Connections are directed.
• No connections between two places or two transitions.p
• Places may hold zero or more tokens.

12Source: Intro to Petri Nets, Wil van der Aalst

Enabled Transition

• A transition is enabled if each of its input places
contains at least one tokencontains at least one token

freeee

wait enter before make_picture after leave gone

occupied

enabled Not Not
13

Not
enabled

Not
enabledSource: Intro to Petri Nets, Wil van der Aalst

Firing of Transition

• An enabled transition can fire (i.e., it occurs).
• When it fires it consumes a token from each input• When it fires it consumes a token from each input

place and produces a token for each output place.

free

fired

wait enter before make_picture after leave gone

fired

occupied

14

occupied
Source: Intro to Petri Nets,
Wil van der Aalst

Colored Petri Nets (CPN)

• Developed by Kurt Jensen
• Petri nets extended with:

– Color
• Tokens given data value

Ti– Time
• Enabled transition fires after specified time

– HierarchyHierarchy
• Transition can be decomposed to lower level

CPN subnet
T l t• Tool support
– Design CPN

1`t k V 1 1`t k V 2

15

Place1 Transition Place2
1`tokenVar1 1`tokenVar2

Concurrent Software Architecture

• Uses component / connector paradigm
• Component

– Concurrent object with single thread of control
– Passive entity object

• Encapsulates data
• Connector

Provides message communication between– Provides message communication between
concurrent objects

• Model components and connectors using Colored Petri p g
Net templates

16

Mapping Concurrent Software Architecture
to Colored Petri Nets

• CPN behavioral design template designed for each
– ComponentComponent
– Connector

• Colored Petri Net notation
– Transition executes function when fired

• Consumes colored tokens from input places
• Produces colored tokens on output places
• Transitions can have timing parameters

Place1 Transition Place2
1`tokenVar1 1`tokenVar2

17

Transition Place2

Asynchronous I/O Component

One concurrent component for each asynchronous I/O device
Activated by device I/O interruptActivated by device I/O interrupt
Reads input
Converts to internal format
Sends message containing data
Waits for next interrupt

«asynchronous
1: doorInterrupt
(doorInput) 2: doorRequest

Figure 14.1b Design model – concurrent communication diagram

«asynchronous input»
: DoorSensorInterface

: Microwave
Control

«asynchronous
input device»
: DoorSensor

(p)

18
Hardware / software boundary

Asynchronous I/O Pattern

• I/O component
– Handles external input/output on demandHandles external input/output on demand

• CPN pattern
– Thread of control maintained by control tokeny
– Each component has its own control token

• CPN Transition executes function
– Processing time associated with transition

• Colored tokens to differentiate role of tokens
C t l t k– Control token

– Input event
– Output message

19

– Output message

Asynchronous I/O Pattern

{E i

asyncInput
Interface

<<I/O>>

external
InputSource

<<external I/O device>> inputEvent asyncMsg To internal
connector

object

{Execution = async;
IO = input
Process Time = <process time>
}(a) I/O component

CPN I/O t t l tCPN I/O component template

inputEvent
1

asyncMsg
1

CTRL
1

(b)(b)

CTRL
1

20

Periodic Algorithm Component

Component for each periodic algorithm
Component activated periodicallyComponent activated periodically

Activated by timer event
Executes algorithmg
Waits for next timer event

Figure 14 5b Design model – concurrent communication diagramFigure 14.5b Design model concurrent communication diagram

«periodic»
: Microwave«external timer»

Di it lCl k

1: timerEvent 3: timer
Expired «control»

: Microwave: Microwave
Timer: DigitalClock

2: decrementTime
(out timeLeft)

: Microwave
Control

21
«entity»

: OvenData

Periodic Algorithm Pattern

• Algorithm component
– Encapsulate application logicEncapsulate application logic

• Modeled by transition
– Execute asynchronously or periodicallyy y p y

• Periodic behavior modeled by
– Sleep – Wakeup – Ready – Timeout cycle

22

Periodic Algorithm Pattern

{Execution = periodic;
Activation Time = <sleep time>
Process Time = <process time>
}

periodic
Algorithm

Object

<<algorithm>>enable

(a)

external
Timer
Object

l ith talgorithm component

CTRL

E
1

CTRL
1

(b)

CTRL
1

23
CPN algorithm template

Entity Object

• Entity object is a passive object
– Encapsulates data p
– Hides contents of data structure
– Data accessed indirectly via operations

• Passive object accessed by two or more components
– Operations must synchronize access to data

E b l l i– E.g., by mutual exclusion
– Use semaphore or monitor object

24

Entity Object Pattern

• Entity objects are passive
– Encapsulate dataEncapsulate data
– No thread of control

• > No control token
– Interfaces are through places rather than

transitions
F ili i bj• Facilitates connection to concurrent objects

– Interfaces represent access operations
• Operation behavior modeled with transition• Operation behavior modeled with transition
• Execution uses caller’s control token

25

Entity Object Pattern

entity object

CPN entity
template

26

Connectors

• Connector
P id i ti b t– Provides message communication between
concurrent components

• Queue - Asynchronous communicationQueue Asynchronous communication
• Buffer - Synchronous communication

• Interface to connector uses CPN places
– Facilitates interconnection between concurrent

component templates and connector templates

27

Synchronous Message
Communication With Reply

• Producer sends message and waits for reply
• Consumer receives message

• Suspended if no message is present
• Activated when message arrivesActivated when message arrives
• Generates and sends reply

• Producer and Consumer continue

28

Synchronous Communication Pattern

• Synchronous buffer models synchronous
i ticommunication

• Producer sends message and waits for reply
• One message at a time allowed in the buffer• One message at a time allowed in the buffer
• Producer and consumer are blocked until message

has been passed

29

Synchronous Communication Pattern

synchronous message

1`(data,CTRL)
1

1`F
1

1`CTRL
1

30CPN buffer connector template

Asynchronous Message Communication

• Producer sends message and continuesg
• Consumer receives message

• Suspended if no message is present
• Activated when message arrives• Activated when message arrives

• Message queue may build up at Consumer

31

Asynchronous Message Communication
(Queue) Pattern

• Asynchronous communication
– Modeled using FIFO message queue

• Producer is not blocked during the communication
Cons mer is onl blocked if no messages in q e e• Consumer is only blocked if no messages in queue

32

Asynchronous Message Communication (Queue)
Pattern

asynchronous message

33
CPN queue template

Constructing CPN Model from
Concurrent Design Model

1. Develop COMET design model
– COMET structuring criteriaCOMET structuring criteria

2. Construct Architecture-Level CPN Model
– Represent each component & connector by CPN template

Templates developed using DesignCPN– Templates developed using DesignCPN
– Interconnect CPN templates

3. Model characteristics of individual component
– Customize CPN templates for application

4. Exercise model in DesignCPN simulator
– Analyze functional behaviorAnalyze functional behavior

• Detect and correct design problems
– Analyze performance characteristics

34

• Does software architecture meets timing constraints?

Example – Cruise Control Architecture

cruiseControlRequest
CruiseControl
Le erInterface

<<I/O>>

CruiseControl

<<state dependent>>

CruiseControl
Le erDe ice

<<external input device>>

select(),
clear()

ccCommand

cruiseControlLeverInput

{Execution = async;
IO = input
Process Time = 100ms

{Execution = async;
Process Time = 200ms
}

cruiseControlRequest

LeverInterface

<<algorithm>>

LeverDevice

«entity»
:DesiredSpeed

«entity»
:CurrentSpeed

throttleValue

read()

read()

} {Execution = periodic;
Activation Time = 100ms
Process Time = 50ms
}

brakeStatus

engineStatus

Speed
Adjustment

AutoSensors

<<I/O>>

BrakeDevice

<<external input device>>

p

throttleOutput

{Execution = periodic;
IO = output
Process Time = 20ms
Activation Time = 100ms
}

{Execution = periodic;
IO = input
Activation Time = 100ms
Process Time = 20ms
}

Throttle
Interface

<<I/O>>

EngineDevice

<<external input device>>

to throttle

35

1. Applying CPN Templates –
Context ModelContext Model

36

2. Construct CPN Architecture Model

• Interconnect CPN templates
– Decompose context-level CPN model intoDecompose context level CPN model into

architecture-level model
– Each component and connector mapped to CPN

t l ttemplate
• CPN Interfaces for components and connectors

Concurrent object CPN templates use transitions– Concurrent object CPN templates use transitions
– Passive & connector object templates use places
– Concurrent object templates are connected to passiveConcurrent object templates are connected to passive

/ connector object templates
• Maintains CPN place-transition connection rules

37

Connecting CPN Templates to form CPN
Architecture

I/O component async message

CPN I/O component template

38CPN queue connector template

3. Modeling Individual Components

• Each CPN template must be customized to capture
specific object behaviorp j
– Architectural parameters

• Processing time / sleep time – set CPN timing
parameters

• Buffer size - set queue limits
Passive classes– Passive classes

• Capture attributes and operations to be included
in entity objectsy j

• Exclusion / Access type - capture desired mutual
exclusion behavior on entities

/ f

39

– Message / data specifications
• Use to define CPN colorsets and token variables

3 Applying CPN Templates –
Customizing Individual Objectg j

I/O object

»

CPN I/O

40

CPN I/O
template

4. Analyzing Software Architecture with CPN Model

• CPN model used to execute architectural design
• ValidationValidation

– Two detailed case studies
– Exercised using Design CPN simulator

Functional analysis• Functional analysis
– Execute test scenarios to determine if architecture

outputs expected / desired results
C i hit t t i l l f d t il– Can examine architecture at varying levels of detail

• Performance analysis
– Throughput analysis
– Timing analysis
– Queuing backlogs

41

1`”Accel”1

Analyzing Software Architecture with CPN Model

1`”BrakeOff”1

(a)
1`”Engine

On”
1

(b)

1

1 1`”BrakeOff”

1`50

42

(b)
1 1`”Engine

On”

Example of Timing Analysis

Cruise Control End-To-End Timing Performance

1200

800

1000

1200
n

Ti
m

e
(m

s)

400

600

m
an

d
C

om
pl

et
io

n

0

200

0 5000 10000 15000 20000 25000 30000

Co
m

m

Elapsed Time (ms)

43

Conclusions and Future Research
• Dynamic behavior of concurrent system represented using

– CPN templates
• Allow systematic, repeatable modeling of object

behavioral patterns
M i t i t t d i t it f ft• Maintain structure and integrity of software
architecture

• CPN analysisC a a ys s
– Analyze concurrent behavior at design stage
– Allows correction of fundamental design problems

• Areas for future work
– Extend to support distributed environments

44

– Investigate scalability to larger models
– Automate translation to CPN model

