
Correct Refactoring of
Concurrent Java Code
M. Schäfer, J. Dolby, M. Sridharan,

E. Torlak and F. Tip

ECOOP 2010

Speaker: Zsolt István

Outline

• Motivation

• Contribution

• Theory

• Implementation

• Conclusion

2

Motivation

• Real-world projects need refactoring

• Serial code
– Regression testing

• Parallel code
– Hard to detect modified behavior

– Use only behavior-preserving refactoring

3

Motivation II

• Behavior-preserving refactoring:

all behaviors exhibited by the refactored
program can also be exhibited by the original,
and vice versa

• Execution model to reason upon:
– Java Memory Model

4

Pull Up Members

5

Pull Up Members

6

Super.class

Sub.class

Moving synchronized

• Problem: implicit target changed

7

Moving synchronized

• Problem: implicit target changed

• Desugaring: make implicit lock target explicit

static synchronized void n() {…}

static void n() {synchronized(A.class) {…} }

• Resugaring: reverse operation

8

Extract Local

9

Extract Local

10

Escaping synchronized

• Problem: action not protected anymore by lock

• Alternate problem: unrelated action becomes
protected by lock

11

Escaping synchronized

• Problem: action not protected anymore by lock

• Alternate problem: unrelated action becomes
protected by lock

• Solution: Dependence edge preservation
– Actions: ordinary or synch.

– Ordinary actions can be reordered freely

– Synch. actions are barriers to reordering

12

Java Memory Model

• Program = possibly infinite set of threads

• Thread = set of memory traces

• Memory trace = action & value

13

Java Memory Model

• Program = possibly infinite set of threads

• Thread = set of memory traces

• Memory trace = action & value

• Execution = pick one trace for each thread

• Program is free of data races if all executions
are free from data races

14

During execution

• Program order
– intra-thread ordering of actions

• Synchronization order
– global total order on synch. actions

15

During execution

• Program order
– intra-thread ordering of actions

• Synchronization order
– global total order on synch. actions

• Action a happens before b if:
(1) a ≤pob
(2) a ≤po rel ≤so acq ≤hb b, where rel and acq act on the
same lock

• Data race = accesses to some variable not related
by happens before

16

Trace Preserving Refactoring

• Does not alter the set of memory traces of a
program

• Theorem: After such a refactoring every
possible behavior of the original program is a
behavior of the refactored program and vice
versa. This holds even in the presence of data
races.

17

Trace Preserving Refactoring II

• JMM has no notion of methods
• Trace preserving if just reorganizes code:

– Pull Up & Push Down Method
– Move Method
– Extract & Inline Method

• Not trace preserving if field accesses are

reordered:
– Extract & Inline Local

18

Restructuring Refactoring

• Partial function mapping actions from the
original execution E to E’

• A restructuring transformation is said to
respect synchronization dependencies if its
mapping fulfills:
1. If a ≤so b, then also f(a) ≤’so f(b).
2. If acq is an acquire action and acq ≤po b, then also

f(acq) ≤’po f(b).
3. If rel is a release action and a ≤po rel, then also

f(a) ≤’po f(rel).
19

Restructuring Refactoring II

• Theorem: If there is a data race between two
actions f(a) and f(b) in execution E’, then there is
already a data race between a and b in E.

• Corollary: A restructuring transformation that

does not introduce any new actions will map
correctly synchronized programs to correctly
synchronized programs
– Newly introduced actions ??
– Proof for Extract & Inline Local

20

Implementation

• Extend a refactoring engine
– Intra-procedural approach
– Use control flow analysis to calculate dependence

on mutex enters/exits

• Desugaring:
(1) Desugar
(2) Refactor
(3) Resugar if possible

 21

Implementation II

• Dependence edge preservation:
(1) Calculate dependencies

(2) Refactor

(3) Verify new dependencies

(4) Accept or reject refactoring

• Can not extract/inline expressions containing
calls to methods involving synchronization

22

Implementation III

• Method involves synchronization if:
1. is declared synchronized or contains a synchronized block

2. contains an access to a volatile field

3. calls a thread management method from the standard library

4. calls a method which involves synchronization

• Measurements show <30% such methods
(DaCapo benchmark and Apache Ant)

23

Conclusion

• Contribution
– Idea of concurrency-aware refactoring
– Synchronized keyword desugaring
– Dependence edge preservation technique
– Proofs and detailed discussion

• Criticism
– Complex refactorings not discussed (Variable To Field)
– Nice read, but too much “marketing”
– Cited mostly by same authors

24

	Correct Refactoring of Concurrent Java Code
	Outline
	Motivation
	Motivation II
	Pull Up Members
	Pull Up Members
	Moving synchronized
	Moving synchronized
	Extract Local
	Extract Local
	Escaping synchronized
	Escaping synchronized
	Java Memory Model
	Java Memory Model
	During execution
	During execution
	Trace Preserving Refactoring
	Trace Preserving Refactoring II
	Restructuring Refactoring
	Restructuring Refactoring II
	Implementation
	Implementation II
	Implementation III
	Conclusion
	Slide Number 25

