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Motivation 

• Real-world projects need refactoring 

 

• Serial code 
– Regression testing 

• Parallel code 
– Hard to detect modified behavior 

– Use only behavior-preserving refactoring 
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Motivation II 

• Behavior-preserving refactoring:  

all behaviors exhibited by the refactored 
program can also be exhibited by the original, 
and vice versa 

 

• Execution model to reason upon: 
– Java Memory Model 
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Pull Up Members 
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Pull Up Members 
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Moving synchronized 

• Problem: implicit target changed 
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Moving synchronized 

• Problem: implicit target changed 

 

• Desugaring: make implicit lock target explicit 
 

static synchronized void n() {…} 
 

static void n() {synchronized(A.class) {…} } 
 

• Resugaring: reverse operation 
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Extract Local 
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Extract Local 
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Escaping synchronized  

• Problem: action not protected anymore by lock 

• Alternate problem: unrelated action becomes 
protected by lock 
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Escaping synchronized  

• Problem: action not protected anymore by lock 

• Alternate problem: unrelated action becomes 
protected by lock 

 

• Solution: Dependence edge preservation 
– Actions: ordinary or synch. 

– Ordinary actions can be reordered freely 

– Synch. actions are barriers to reordering 
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Java Memory Model 

• Program = possibly infinite set of threads 

• Thread = set of memory traces 

• Memory trace = action & value 
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Java Memory Model 

• Program = possibly infinite set of threads 

• Thread = set of memory traces 

• Memory trace = action & value 

 

• Execution = pick one trace for each thread 

• Program is free of data races if all executions 
are free from data races 
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During execution 

• Program order 
– intra-thread ordering of actions 

• Synchronization order 
– global total order on synch. actions 
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During execution 

• Program order 
– intra-thread ordering of actions 

• Synchronization order 
– global total order on synch. actions 

• Action a happens before b if: 
(1) a ≤pob 
(2) a ≤po rel ≤so acq ≤hb b, where rel and acq act on the 
same lock 

• Data race = accesses to some variable not related 
by happens before 
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Trace Preserving Refactoring 

• Does not alter the set of memory traces of a 
program 

 

• Theorem: After such a refactoring every 
possible behavior of the original program is a 
behavior of the refactored program and vice 
versa. This holds even in the presence of data 
races. 
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Trace Preserving Refactoring II 

• JMM has no notion of methods 
• Trace preserving if just reorganizes code:  

– Pull Up & Push Down Method 
– Move Method 
– Extract & Inline Method  

 
• Not trace preserving if field accesses are 

reordered: 
– Extract & Inline Local 
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Restructuring Refactoring 

• Partial function mapping actions from the 
original execution E to E’ 
 

• A restructuring transformation is said to 
respect synchronization dependencies if its 
mapping  fulfills: 
1. If a ≤so b, then also f(a) ≤’so f(b). 
2. If acq is an acquire action and acq ≤po b, then also 

f(acq) ≤’po f(b). 
3. If rel is a release action and a ≤po rel, then also 

f(a) ≤’po  f(rel). 
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Restructuring Refactoring II 

• Theorem: If there is a data race between two 
actions f(a) and f(b) in execution E’, then there is 
already a data race between a and b in E. 

 
• Corollary: A restructuring transformation that 

does not introduce any new actions will map 
correctly synchronized programs to correctly 
synchronized programs 
– Newly introduced actions ?? 
– Proof for Extract & Inline Local 
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Implementation 

• Extend a refactoring engine 
– Intra-procedural approach 
– Use control flow analysis to calculate dependence 

on mutex enters/exits 
 

• Desugaring: 
(1) Desugar  
(2) Refactor  
(3) Resugar if possible 
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Implementation II 

• Dependence edge preservation: 
(1) Calculate dependencies  

(2) Refactor 

(3) Verify new dependencies   

(4) Accept or reject refactoring 

 

• Can not extract/inline expressions containing 
calls to methods involving synchronization 

22 



Implementation III 

• Method involves synchronization if: 
1. is declared synchronized or contains a synchronized block 

2. contains an access to a volatile field 

3. calls a thread management method from the standard library 

4. calls a method which involves synchronization 

 

• Measurements show <30% such methods 
(DaCapo benchmark and Apache Ant) 
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Conclusion 

• Contribution 
– Idea of concurrency-aware refactoring 
– Synchronized keyword desugaring 
– Dependence edge preservation technique 
– Proofs and detailed discussion 

 

• Criticism 
– Complex refactorings not discussed (Variable To Field) 
– Nice read, but too much “marketing” 
– Cited mostly by same authors 
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