
Speculative Synchronization: Applying Thread-
Level Speculation to Explicitly Parallel 
Applications
José F. Martínez and Josep Torrellas

Dept. of Computer Science, University of Illinois, 2002

Presented by: David Itten

18.04.2012 1



Agenda

� Thread-Level Speculation

� Introduction to Speculative Synchronisation

� Hardware needed

� Using Speculative Synchronisation

� Evaluation

18.04.2012 2



Thread-Level Speculation TLS

� One safe thread

� Extracts speculative threads from serial code

� Threads go into potentially unsafe program sections

� Epoch numbers, lowest epoch number is safe thread

� Unsafe memory state in buffer

18.04.2012 3



TLS - Example

18.04.2012 4



Speculative Synchronization

� Execute code past active barriers, busy locks and unset 

flags

� Extra concurrency in presence of conservatively placed 

synchronisation

� Apply TLS concept to explicitly parallel applications
� No ordering of speculative threads

18.04.2012 5



Speculative Synchronization Unit (SSU)

18.04.2012 6



Speculative Synchronization - Process

18.04.2012 7



Speculative execution

� Checkpoint the execution
� Backup register states

� Processor hints for all memory accesses

� Set speculative bit in cache
� Write back cache content to memory if dirty in all caches

18.04.2012 8



Access conflicts

� Speculative thread receives a message for cache lines 

marked speculative
� Squash receiver of message

� Safe thread never squashed!

� Squash procedure:
� Invalidate all dirty cache lines with speculative bit

� Clear all speculative bits

� Restore check pointed register state

� Restart thread

18.04.2012 9



SSU states

- Aquire / Release flags 

set

- SSU Active

� Thread is executing 

speculatively CS

18.04.2012 10



SSU states

- Acquire flag set

- SSU Active

� Thread already left the 

CS, executes code after 

the CS and wants to 

commit its values

18.04.2012 11



SSU states

- Release flags set

- SSU Inactive

� This is the safe thread, 

executing the CS

18.04.2012 12



Speculative Flags

� Release bit kept clear (Release while speculative)

� Speculatively execute code after the flag

� Barriers can be built using flags and locks

18.04.2012 13



Potential problems

� No free cache lines available: Stall execution

� Second lock: 
� Handle second lock like a normal variable

� Wait for lock until thread becomes safe or lock is released

� Exceptions: Speculative threads are always squashed

� Irreversible actions (e.g. I/O access)

18.04.2012 14



Evaluation

� NUMA processor architecture

� 16 or 64 nodes

� L1 and L2 write back caches

� 5 concurrent applications used for test
� Hand-parallelized

� Parallelizing compiler

� Annotated applications which are transformed to parallel code

18.04.2012 15



Evaluation

18.04.2012 16



Evaluation

18.04.2012 17



Conclusion

� Faster parallel execution for free

� Requires a hardware modification

� Barriers are still a problem

18.04.2012 18



Questions

18.04.2012 19


