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Agenda

� Thread-Level Speculation

� Introduction to Speculative Synchronisation

� Hardware needed

� Using Speculative Synchronisation

� Evaluation
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Thread-Level Speculation TLS

� One safe thread

� Extracts speculative threads from serial code

� Threads go into potentially unsafe program sections

� Epoch numbers, lowest epoch number is safe thread

� Unsafe memory state in buffer
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TLS - Example
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Speculative Synchronization

� Execute code past active barriers, busy locks and unset 

flags

� Extra concurrency in presence of conservatively placed 

synchronisation

� Apply TLS concept to explicitly parallel applications
� No ordering of speculative threads
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Speculative Synchronization Unit (SSU)
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Speculative Synchronization - Process
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Speculative execution

� Checkpoint the execution
� Backup register states

� Processor hints for all memory accesses

� Set speculative bit in cache
� Write back cache content to memory if dirty in all caches
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Access conflicts

� Speculative thread receives a message for cache lines 

marked speculative
� Squash receiver of message

� Safe thread never squashed!

� Squash procedure:
� Invalidate all dirty cache lines with speculative bit

� Clear all speculative bits

� Restore check pointed register state

� Restart thread
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SSU states

- Aquire / Release flags 

set

- SSU Active

� Thread is executing 

speculatively CS
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SSU states

- Acquire flag set

- SSU Active

� Thread already left the 

CS, executes code after 

the CS and wants to 

commit its values
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SSU states

- Release flags set

- SSU Inactive

� This is the safe thread, 

executing the CS
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Speculative Flags

� Release bit kept clear (Release while speculative)

� Speculatively execute code after the flag

� Barriers can be built using flags and locks
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Potential problems

� No free cache lines available: Stall execution

� Second lock: 
� Handle second lock like a normal variable

� Wait for lock until thread becomes safe or lock is released

� Exceptions: Speculative threads are always squashed

� Irreversible actions (e.g. I/O access)
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Evaluation

� NUMA processor architecture

� 16 or 64 nodes

� L1 and L2 write back caches

� 5 concurrent applications used for test
� Hand-parallelized

� Parallelizing compiler

� Annotated applications which are transformed to parallel code
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Evaluation
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Evaluation
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Conclusion

� Faster parallel execution for free

� Requires a hardware modification

� Barriers are still a problem
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Questions

18.04.2012 19


