
Emerald

Simple Call

object A
 B.f[]

end A

object B
 function f[]

end B

Remote Call

object A
 B.f[]

end A

object B
 function f[]

end B

Concurrency and Distribution in
the Emerald Object-Oriented

Language

Eric Jul
Professor II, University of Oslo

Professor Emeritus, University of Copenhagen
Member, Bell Labs Ireland

One Day Four People Gathered
to Do an OO Language with

Concurrency and Distribution

OS/OO-runtime-
mobility

OO-language design

Ph.D. student Eric Jul Norm Hutchinson
Faculty Hank Levy Andrew Black

Main Contributions

•  Distribution: Mobile objects (Eric/Hank)
Any object can move at any time. Full on-the-fly
•  object mobility
•  thread mobility
•  heterogeneous mobility: VAX, SUN3, SPARC, DEC Alpha

•  Conformity based type system (Norm/Andrew)
Type system based on conformity principle
Well-defined semantics (e.g., NIL makes sense!)

•  Clean OO language (better than succesors?)
including uniform object model

History
•  Developed in Seattle at the University of

Washington 1984-1986
•  Emerald is green; Emerald City is Seattle
•  Original UW version: native code and

virtual machine for VAX for speed
•  UBC (University of British Columbia)

version: Byte Codes for portability;
compiler written in BC Emerald

What does it look like?

•  In a nutshell: Java with an Algol-like syntax
•  Heavily inspired by

– Algol/Simula for syntax & semantics
•  ”Clean” OO language – ”everything” is an

object: data, integers, strings, arrays,
classes, types as in Smalltalk

•  Language constructs are NOT objects – for
compilability and speed

•  No pointers: just object & object references

Why?

•  Objects in a distributed context
•  Smalltalk SLOW – want ~ C performance
•  Want strong typing
•  Want lightweight objects
•  Want full distribution including location

concept, failure handling
•  Want full, on-the-fly mobility

YOUR Background

•  Know Java?
•  Experienced Java programmer?
•  Other OO languages?

Let’s start with objects

Principle: Everything is an object!

How to create an object?

Classic method:

 X = new someclass

But this requires classes – let’s try Occam’s razor:

Classless Object Construction

Object constructors:
 object seqno

 var prev: Integer = 0

 Integer operation getSeqNo[]

 prev <- prev +1

 return prev

 end getSeqno

 end seqno

The above is an executable expression!

Classless Object Construction
Object constructors:
 x <- object seqno

 var prev: Integer = 0

 Integer operation getSeqNo[]

 prev <- prev +1

 return prev

 end getSeqno

 end seqno

The above is an executable expression that is
assigned to x

Object Constructors

•  Execution results in a new object
•  Execute again – and get yet another object
•  No class!

Want classes?

An Object that is a Class
object seqnoclass
 operation create[]
 return
 object seqno
 var prev: Integer = 0
 Integer operation getSeqNo[]
 prev <- prev +1
 return prev
 end getSeqno
 end seqno
 end create
end seqnoclass

Classes with Free Variables
object seqnoclass
 operation create[]
 return
 object seqno
 var prev: Integer <- InitSN
 Integer operation getSeqNo[]
 prev <- prev +1
 return prev
 end getSeqno
 end seqno
 end create
end seqnoclass

Classes with Parameters
object seqnoclass
 operation createInit[InitSN: Integer]
 return
 object seqno
 var prev: Integer <- InitSN
 Integer operation getSeqNo[]
 prev <- prev +1
 return prev
 end getSeqno
 end seqno
 end create
end seqnoclass

Class done by Syntatic Sugaring

The following turns into the previous double object
constructor:

 class seqno

 var prev: Integer = 0

 Integer operation getSeqNo[]

 prev <- prev +1

 return prev

 end getSeqno

 end seqno

Inheritance by Sugaring

const SC <- class seqno
 var prev: Integer = 0

 Integer operation getSeqNo[]

 prev <- prev +1

 return prev

 end getSeqno

 end seqno

Inheritance by Sugaring/Adding

const SC2 <- class seqno2 (SC)
 Integer operation getSeqNo2[]

 prev <- prev + 2

 return prev

 end getSeqno2

 end seqno2

Inheritance by Sugaring/Overwrite

const SC2 <- class seqno2 (SC)
 Integer operation getSeqNo[]

 prev <- prev + 2

 return prev

 end getSeqno

 end seqno2

const SC2 <- class seqno2 (SC)
 class function getSuper[] ->

 [r: Any]

 r <- SC

 end getSuper

 end seqno2

Class Operations

Using a class to create an object

Var mySeqNo: type-defined-later
mySeqNo <- SC.create[]

Classes ARE merely objects!

Types

Types are abstract descriptions of the
operations required of an object (think: Java
Interfaces – they are close to types in
Emerald).

Collection of operation signatures.

Simple Type Example

type SeqNoSource
 Integer getSeqNo[]

end SeqNoSource

Think Java interface

Using a class to create an object

Var mySeqNo: SeqNoSource
mySeqNo <- SC.create[]

What is conformity?
type BankAccount
 operation deposit[Integer]
 operation withdraw[Integer]

->[Integer]
 function fetchBalance[] ->

[Integer]
end BankAccount

type DepositOnlyBankAccount
 function fetchBalance[] ->

[Integer]
 operation deposit[Integer]
end DepositOnlyBankAccount

Conformity object-to-
type

and type-to-type

BankAccount conforms

to
DepositOnlyBankAcc
ount because it
support all the require
operations – and the
parameters also
conform

Conformity informally

An object is said to conform to a type, if
•  It has the operations specified by the type
•  For each operation in the type:

– The number of parameters is the same in the
object as in the type

– Each input parameter of the object conforms to
the corresponding param of the type

– Each output parameter of the type conforms to
the corresponding param of the object (contra
variant)

Conformity between types
Conformity is a mathematical relationship
If T is to conform to S:
1.  T must have all the operations required by S
2.  For each operation in T the corresponding

operation in S:
•  in-parameters must conform
•  out-parameters must conform in opposite order

Contravariance: not in Simula nor Eiffel
necessary to make semantic sense of programs

Conformity details

•  Conformity is implicit
•  No ”implements” as in Java
•  Operation names important
•  Parameter names do not matter, just their

type
•  Arity matters: foo(char) different from

foo(char, float)

Conformity more formally

•  Don’t listen to me: Talk to Andrew Black!
•  An object can conform to many different

types
•  An object has a ”best-fitting” type: the

”largest” of the types that the object
conforms to. Essentially just collect all its
methods

•  Conformity defined between types

Lattice of types

•  Types form a lattice
•  Top is

type Any

end Any

•  Bottom is Noone (it has ALL operations”)
• NIL conforms to Noone
• NIL can thus be assigned to any variable!

(Read ”Much Ado About NIL.)

Class (with Type Added)
Const SC <- object seqnoclass
 operation create[] -> [r: SeqNoSource]
 return
 object seqno
 var prev: Integer = 0
 operation getSeqNo[] -> [s:int]
 prev <- prev +1
 s <- prev
 end getSeqno
 end seqno
 end create
end seqnoclass

Concurrency

object A
 process
 ... do something
 end process
end A

Initialization

object A
 initially
 ... initialize object
 end initially
 process
 ... do something
 end process
end A

Distribution

•  Sea of objects (draw)
•  Sea is divided into disjunct parts called

Nodes
•  An object is on one and only one Node at a

time
•  Each node is represented by a Node object

Location Primitive

• Locate X returns the node where X is
(was!)

•  Note that the object may already have
moved to another node (actually any
number of moves)

Mobility Primitive

move X to Y

Mobility Primitive

Basic primitive is move X to Y
The object X is moved where Y is.
More formally: The object denoted by the

expression X is move to the node where the
object denoted by expression Y was!

If the move cannot be done, it is ignored.
NOTHING is guaranteed – nothing may

happen.

Strong Move: Fix

Basic primitive is fix X at Y
The object X is moved where Y is & stays

there.
More formally: The object denoted by the

expression X is move to the node where the
object denoted by expression Y was!

Either the move happens – or it fails.
Strong guarantees; potentially expensive

Mobility Example
Mobile Boss

object Boss
process

 var w: Worker
 var n: Node

 n <- …find
usable node

 move self to n

 w <-
Worker.create[]

end process

end Boss

class Worker
 process

 do work …

 end process

end Worker

Mobility Example
Stationary Boss

object Boss

 var w: Worker
 var n: Node

 n <- …find usable node

 w <-Worker.create[]

 move w to n

 w.StartWork[]
end Boss

class Worker

 op StartWork
 slave <- object slave

 process

 work … work

 end process

 end slave
 end StartWork

end Worker

Mobility and Location Concepts

locate X returns (one of) the object X’s
 locations
move X to Y move the object X to the node
 where Y is (or rather was)
fix X at Y as move but disregard
 subsequent moves
refix X at Y as fix but for fixed objects
unfix X allow normal moves

Why two different moves?

•  Fast efficient – mobility hint
•  Slow but sure for when location is part of

the semantics of the application.

Performance

•  Local calls are typically 1,000 – 10,000

times faster than remote calls
•  Co-locate frequently communicating objects

Call-by-move

var B: some object
 ...

 X.F[move B]

 ...

object X
 operation F[arg:T]

 loop

 arg.g[…]

 exit after

 many loops

 end loop

end X

Call-by-visit

var B: some object
 ...

 X.F[visit B]

 ...

object X
 operation F[arg:T]

 loop

 arg.g[…]

 exit after

 many loops

 end loop

end X

How Many Calls of B?
Given a normal PC enviroment, say 2 GHz CPU,

100 Mbit/s Ethernet, how many calls of a small
(say 100 bytes) argument B before breakeven?

•  1
•  10
•  100
•  1,000
•  10,000
•  100,000
•  1,000,000

Where is 17?

IF every object is on exactly one node, where is
the integer object 17?

I hope it is not far away!

It doesn’t change–why not a copy everywhere?!?

Immutable Objects

•  Immutable objects cannot change state
•  Consider: The integer 17
•  Immutable objects are omnipresent
•  User-defined immutable objects: for

example complex numbers
•  Types must be immutable to allow static

type checking

Return-by-move

When an operation creates a result object and
knows it is for the caller’s use only, it can
choose to return the parameter by move.

Return-by-move is not necessary – but

increases efficiency – why??

Killroy
object Killroy
 process
 var myNode <- locate

self
 var up:

array.of[Nodes]
 up <-

myNode.getNodes[]
 foreach n in up
 move self to n
 end foreach
 end process
end Killroy

•  Object moves itself to all
available nodes

•  On the original
MicroVAX (1987)
implementation: 20
moves/second!

•  Note: the thread (called a
process in Emerald)
moves along

Conclusion
Emerald has
•  concurrency with Hoare monitors
•  fully integrated distribution facilities
•  has full on-the-fly mobility
•  a novel attachment language feature
Many novel implementation techniques (more

talks to come!)

Attachment

Problem:
 move an object but its internal data
structure does not move along!

Classic example:

 A tree

Tree

class TreeClass
 var left, right: TreeClass

 var data: …

end TreeClass

Attached Tree

class TreeClass
 attached var left, right:
TreeClass

 var data: …

end TreeClass

Attachment: can it be decided
automatically?

Tree example

TreeNode

left, right

Mail message

To
From
Subject
Body

Attachment costs

Attachment has NO run-time cost!
Just a bit in the DESCRIPTOR for an object.
One bit for each variable.

Better: compiler sorts by attached bit – then

merely two integers, e.g.,
 5 attached variables
 4 non-attached variables

Dynamic Attachment

 var X: … <- something
 attached var aX: …

…

Join:
 aX <- X
Leave:
 aX <- NIL

Immutable Objects

•  Immutable objects cannot change state
•  Examples: The integer 17
•  User-defined immutable objects: for

example complex numbers
•  Immutable objects are omnipresent
•  Types must be immutable to allow static

type checking

Types are Immutable Objects
Example: arrays

var ai: Array.of[Integer]

ai <- Array.of[Integer].create[]

var aai:
Array.of[Array.of[Integer]]

Let’s look at the implementation
of Array

(Switch to code…)

Conclusion

Emerald is
•  clean OO language
•  fully integrated distribution facilities
•  has full on-the-fly mobility
•  a well-defined type system
Many novel implementation techniques (more

talks to come!)

Web Site

Emerald:
http://www.emeraldprogramminglanguage.org/

Source code available on Sourceforge.

For REAL distribution, use Planetlab:
http://www.planet-lab.org

