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Simple Call 

object A 
  B.f[] 

end A 

object B 
  function f[] 

end B 

 



Remote Call 

object A 
  B.f[] 

end A 

object B 
  function f[] 

end B 
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Main Contributions 

•  Distribution: Mobile objects (Eric/Hank) 
Any object can move at any time. Full on-the-fly 
•  object mobility 
•  thread mobility 
•  heterogeneous mobility: VAX, SUN3, SPARC, DEC Alpha 

•  Conformity based type system (Norm/Andrew) 
Type system based on conformity  principle 
Well-defined semantics (e.g., NIL makes sense!) 

•  Clean OO language (better than succesors?) 
including uniform object model 



History 
•  Developed in Seattle at the University of 

Washington 1984-1986 
•  Emerald is green; Emerald City is Seattle 
•  Original UW version: native code and 

virtual machine for VAX for speed 
•  UBC (University of British Columbia) 

version:  Byte Codes for portability; 
compiler written in BC Emerald 



What does it look like? 

•  In a nutshell: Java with an Algol-like syntax 
•  Heavily inspired by 

– Algol/Simula for syntax & semantics 
•  ”Clean” OO language – ”everything” is an 

object: data, integers, strings, arrays, 
classes, types as in Smalltalk 

•  Language constructs are NOT objects – for 
compilability and speed 

•  No pointers: just object & object references 



Why? 

•  Objects in a distributed context 
•  Smalltalk SLOW – want ~ C performance 
•  Want strong typing 
•  Want lightweight objects 
•  Want full distribution including location 

concept, failure handling 
•  Want full, on-the-fly mobility 



YOUR Background 

•  Know Java? 
•  Experienced Java programmer? 
•  Other OO languages? 



Let’s start with objects 

Principle: Everything is an object! 
 
How to create an object? 
 
Classic method: 
 

 X = new someclass 
 

But this requires classes – let’s try Occam’s razor:  



Classless Object Construction 

Object constructors: 
 object seqno 

  var prev: Integer = 0 

  Integer operation getSeqNo[] 

   prev <- prev +1 

   return prev 

  end getSeqno 

 end seqno 

The above is an executable expression! 



Classless Object Construction 
Object constructors: 
 x <- object seqno 

  var prev: Integer = 0 

  Integer operation getSeqNo[] 

   prev <- prev +1 

   return prev 

  end getSeqno 

 end seqno 

The above is an executable expression that is 
assigned to x 



Object Constructors 

•  Execution results in a new object 
•  Execute again – and get yet another object 
•  No class! 
 
Want classes? 



An Object that is a Class 
object seqnoclass 
 operation create[] 
  return 
   object seqno 
      var prev: Integer = 0 
      Integer operation getSeqNo[] 
         prev <- prev +1 
         return prev 
      end getSeqno 
      end seqno 
 end create 
end seqnoclass 



Classes with Free Variables 
object seqnoclass 
 operation create[] 
  return 
   object seqno 
      var prev: Integer <- InitSN 
      Integer operation getSeqNo[] 
         prev <- prev +1 
         return prev 
      end getSeqno 
      end seqno 
 end create 
end seqnoclass 



Classes with Parameters 
object seqnoclass 
 operation createInit[InitSN: Integer] 
  return 
   object seqno 
      var prev: Integer <- InitSN 
      Integer operation getSeqNo[] 
         prev <- prev +1 
         return prev 
      end getSeqno 
      end seqno 
 end create 
end seqnoclass 



Class done by Syntatic Sugaring 

The following turns into the previous double object 
constructor: 

 class seqno 

  var prev: Integer = 0 

  Integer operation getSeqNo[] 

   prev <- prev +1 

   return prev 

  end getSeqno 

 end seqno 



Inheritance by Sugaring 

const SC <- class seqno 
  var prev: Integer = 0 

  Integer operation getSeqNo[] 

   prev <- prev +1 

   return prev 

  end getSeqno 

 end seqno 



Inheritance by Sugaring/Adding 

const SC2 <- class seqno2 (SC) 
 Integer operation getSeqNo2[] 

   prev <- prev + 2 

   return prev 

  end getSeqno2 

 end seqno2 



Inheritance by Sugaring/Overwrite 

const SC2 <- class seqno2 (SC) 
 Integer operation getSeqNo[] 

   prev <- prev + 2 

   return prev 

  end getSeqno 

 end seqno2 



const SC2 <- class seqno2 (SC) 
  class function getSuper[] -> 

                           [r: Any] 

   r <- SC 

  end getSuper 

 end seqno2 
 

Class Operations 



Using a class to create an object 

Var mySeqNo: type-defined-later 
mySeqNo <- SC.create[] 

 

Classes ARE merely objects! 
 



Types 

Types are abstract descriptions of the 
operations required of an object (think: Java 
Interfaces – they are close to types in 
Emerald). 

 
Collection of operation signatures. 
 



Simple Type Example 

type SeqNoSource 
   Integer getSeqNo[] 

end SeqNoSource 

 
Think Java interface 



Using a class to create an object 

Var mySeqNo: SeqNoSource 
mySeqNo <- SC.create[] 

 



What is conformity? 
type BankAccount 
  operation deposit[Integer] 
  operation withdraw[Integer] 

->[Integer] 
  function fetchBalance[] -> 

[Integer] 
end BankAccount 
 
type DepositOnlyBankAccount 
  function fetchBalance[] -> 

[Integer] 
  operation deposit[Integer] 
end DepositOnlyBankAccount 

Conformity object-to-
type 

and type-to-type 
 
BankAccount conforms 

to 
DepositOnlyBankAcc
ount because it 
support all the require 
operations – and the 
parameters also 
conform 



Conformity informally 

An object is said to conform to a type, if  
•  It has the operations specified by the type 
•  For each operation in the type: 

– The number of parameters is the same in the 
object as in the type 

– Each input parameter of the object conforms to 
the corresponding param of the type 

– Each output parameter of the type conforms to 
the corresponding param of the object (contra 
variant) 



Conformity between types 
Conformity is a mathematical relationship 
If T is to conform to S: 
1.  T must have all the operations required by S 
2.  For each operation in T the corresponding 

operation in S: 
•  in-parameters must conform 
•  out-parameters must conform in opposite order 

Contravariance: not in Simula nor Eiffel 
necessary to make semantic sense of programs 



Conformity details 

•  Conformity is implicit 
•  No ”implements” as in Java 
•  Operation names important 
•  Parameter names do not matter, just their 

type 
•  Arity matters: foo(char) different from 

foo(char, float) 



Conformity more formally 

•  Don’t listen to me: Talk to Andrew Black! 
•  An object can conform to many different 

types 
•  An object has a ”best-fitting” type: the 

”largest” of the types that the object 
conforms to. Essentially just collect all its 
methods  

•  Conformity defined between types 



Lattice of types 

•  Types form a lattice 
•  Top is 

type Any 

end Any 

•  Bottom is Noone (it has ALL operations”) 
• NIL conforms to Noone  
• NIL can thus be assigned to any variable! 

(Read ”Much Ado About NIL.) 



Class (with Type Added) 
Const SC <- object seqnoclass 
 operation create[] -> [r: SeqNoSource] 
   return 
     object seqno 
     var prev: Integer = 0 
     operation getSeqNo[] -> [s:int] 
         prev <- prev +1 
         s <- prev 
      end getSeqno 
      end seqno 
 end create 
end seqnoclass 



Concurrency 

object A 
  process 
    ... do something 
  end process 
end A 



Initialization 

object A 
  initially 
    ... initialize object 
  end initially 
  process 
    ... do something 
  end process 
end A 



Distribution 

•  Sea of objects (draw) 
•  Sea is divided into disjunct parts called 

Nodes 
•  An object is on one and only one Node at a 

time 
•  Each node is represented by a Node object 



Location Primitive 

• Locate X returns the node where X is 
(was!) 

•  Note that the object may already have 
moved to another node (actually any 
number of moves) 



Mobility Primitive 

 
 

move X to Y 



Mobility Primitive 

Basic primitive is move X to Y 
The object X is moved where Y is. 
More formally: The object denoted by the 

expression X is move to the node where the 
object denoted by expression Y was! 

If the move cannot be done, it is ignored. 
NOTHING is guaranteed – nothing may 

happen. 



Strong Move: Fix 

Basic primitive is fix X at Y 
The object X is moved where Y is & stays 

there. 
More formally: The object denoted by the 

expression X is move to the node where the 
object denoted by expression Y was! 

Either the move happens – or it fails. 
Strong guarantees; potentially expensive 



Mobility Example 
Mobile Boss 

object Boss 
process 

   var w: Worker 
   var n: Node 

   n <- …find 
usable node 

  move self to n 

   w <- 
Worker.create[ ] 

end process 

end Boss 

class Worker 
  process 

    do work … 

  end process 

end Worker 



Mobility Example 
Stationary Boss 

object Boss 

   var w: Worker 
   var n: Node 

   n <- …find usable node 

   w <-Worker.create[ ] 

   move w to n 

  w.StartWork[ ] 
end Boss 

class Worker 

  op StartWork 
    slave <- object slave 

      process 

        work … work 

      end process 

    end slave 
  end StartWork 

end Worker 



Mobility and Location Concepts 

locate X      returns (one of) the object X’s  
                                  locations 
move X to Y   move the object X to the node  
                                 where Y is (or rather was) 
fix X at Y    as move but disregard 
                                  subsequent moves 
refix X at Y  as fix but for fixed objects 
unfix X       allow normal moves 



Why two different moves? 

•  Fast efficient – mobility hint 
•  Slow but sure for when location is part of 

the semantics of the application. 



Performance 

   
•  Local calls are typically 1,000 – 10,000 

times faster than remote calls 
•  Co-locate frequently communicating objects 



Call-by-move 

var B: some object 
  ... 

 

  X.F[move B] 

  ... 

object X 
  operation F[arg:T] 

    loop 

      arg.g[…] 

    exit after 

      many loops 

    end loop 

end X 



Call-by-visit 

var B: some object 
  ... 

 

  X.F[visit B] 

  ... 

object X 
  operation F[arg:T] 

    loop 

      arg.g[…] 

    exit after 

      many loops 

    end loop 

end X 



How Many Calls of B? 
Given a normal PC enviroment, say 2 GHz CPU, 

100 Mbit/s Ethernet, how many calls of a small 
(say 100 bytes) argument B before breakeven? 

•  1 
•  10 
•  100 
•  1,000 
•  10,000 
•  100,000 
•  1,000,000 



Where is 17? 

IF every object is on exactly one node, where is 
the integer object 17? 

 
I hope it is not far away! 
 
It doesn’t change–why not a copy everywhere?!? 



Immutable Objects 

•  Immutable objects cannot change state 
•  Consider: The integer 17 
•  Immutable objects are omnipresent 
•  User-defined immutable objects: for 

example complex numbers 
•  Types must be immutable to allow static 

type checking 



Return-by-move 

When an operation creates a result object and 
knows it is for the caller’s use only, it can 
choose to return the parameter by move. 

 
Return-by-move is not necessary – but 

increases efficiency – why?? 



Killroy 
object Killroy 
  process 
    var myNode <- locate 

self 
    var up: 

array.of[Nodes] 
    up <- 

myNode.getNodes[] 
    foreach n in up 
      move self to n 
    end foreach 
  end process 
end Killroy 

•  Object moves itself to all 
available nodes 

•  On the original 
MicroVAX ( 1987) 
implementation: 20 
moves/second! 

•  Note: the thread (called a 
process in Emerald) 
moves along 



Conclusion 
Emerald has 
•  concurrency with Hoare monitors 
•  fully integrated distribution facilities 
•  has full on-the-fly mobility 
•  a novel attachment language feature 
Many novel implementation techniques (more 

talks to come!) 



Attachment 

Problem: 
 move an object but its internal data 
structure does not move along! 

 
Classic example:  

 A tree 



Tree 

class TreeClass 
  var left, right: TreeClass 

  var data: … 

end TreeClass 

 



Attached Tree 

class TreeClass 
  attached var left, right: 
TreeClass 

  var data: … 

end TreeClass 

 



Attachment: can it be decided 
automatically? 

Tree example 
 
TreeNode 
 
left, right   

Mail message 
 
To 
From 
Subject 
Body 



Attachment costs 

Attachment has NO run-time cost! 
Just a bit in the DESCRIPTOR for an object. 
One bit for each variable. 
 
Better: compiler sorts by attached bit – then 

merely two integers, e.g., 
  5 attached variables 
  4 non-attached variables 



Dynamic Attachment 

  var X: …  <- something 
  attached var aX: … 

… 

Join: 
  aX <- X 
Leave: 
  aX <- NIL 



Immutable Objects 

•  Immutable objects cannot change state 
•  Examples: The integer 17 
•  User-defined immutable objects: for 

example complex numbers 
•  Immutable objects are omnipresent 
•  Types must be immutable to allow static 

type checking 



Types are Immutable Objects 
Example: arrays 
 
var ai: Array.of[Integer] 
 
ai <- Array.of[Integer].create[] 
 
var aai: 
Array.of[Array.of[Integer]] 

 



Let’s look at the implementation 
of Array 

(Switch to code…) 



Conclusion 

Emerald is 
•  clean OO language 
•  fully integrated distribution facilities 
•  has full on-the-fly mobility 
•  a well-defined type system 
Many novel implementation techniques (more 

talks to come!) 



Web Site 

Emerald: 
http://www.emeraldprogramminglanguage.org/ 
 
Source code available on Sourceforge. 
 
For REAL distribution, use Planetlab: 
http://www.planet-lab.org 
 


