
Effective Random Testing of Concurrent

Programs

by Koushik Sen, UC Berkeley, CA, USA

Presented by: Marko Peric

Content

Mittwoch, 21. März 2012 2

• Testing methods of concurrent programs

• Traditional method and its problems

• Model checking and the state-explosion problem

• Partial order reduction technique

• Randomized search

• Simple Randomized Algorithm

• RAPOS – Random Partial Order Sampling Algorithm

• Results

TESTING METHODS OF CONCURRENT

PROGRAMS

Mittwoch, 21. März 2012 3

Traditional testing

 How does it work?
 Repeatedly execute the program in order to get different

interleavings.

 Testing problems:
 In a particular environment

 Testing depends on the underlying operating system or VM.

 Testing is attractive because:
 Inexpensive in comparison with model checking or verification.

 Scales to very large programs.

Mittwoch, 21. März 2012 4

Model checking

 How does it work?
 Systematically controls the thread scheduler to get all behaviours of

a program.

 Problems:
 Can end up in a localized search of the state-space.

 Does not scale with program size.

 The number of possible interleavings often grows exponetially
with the length of execution - STATE-EXPLOSION PROBLEM.

Mittwoch, 21. März 2012 5

Partial order technique(1)

 Starts from the fact:
 A number of interleavings are equivalent to each other because they

correspond to different execution orders of various non-interacting
(or independent) instructions from concurrent threads.

 Different execution orders of non-inderacting instructions from
concurrent threads result in the same overall final state.

 The result is:
 If one execution order finds a defect => all equivalent execution

orders will detect the defect.

Mittwoch, 21. März 2012 6

Partial order technique(2)

 Happens-before relation defines a partial order over all the

instructions executed during an execution.

 Concurrent executions with the same happens-before

relation are equivalent and the set of them is a PARTIAL

ORDER.

 Partial order advantages:
 Addresses the state-explosion problem

 Helping the model checkers to reduce the search space

Mittwoch, 21. März 2012 7

Randomized search

 How does it work?
 Picks up a random thread to execute at every execution point where

a potential thread switch can happen.

 Why is it better than traditional testing?
 Explicitly tries to control the scheduling of threads.

 Explores wide variety of interleavings without getting stuck in a
localized search.

 Problems:
 Samples non-equivalent thread interleavings in a very non-uniform

way => some partial orders are sampled more often than the others.

Mittwoch, 21. März 2012 8

SIMPLE RANDOMIZED ALGORITHM

Mittwoch, 21. März 2012 9

Simple Randomized Algorithm (1)

 RandomExecutionSimple(){

 s := s0;

 while(Enabled(s) ≠ ∅) {

 take a random t out of Enabled(s);

 s := Execute(s,t);

 }

 if (Alive(s) ≠ ∅) {

 print “Deadlock Detected“;

 }

 }

Mittwoch, 21. März 2012 10

Simple Randomized Algorithm (3)

 One partial order with 0.96875 and the other with 0.03125.

 Ideally, sampling with probability of 0.5.

Mittwoch, 21. März 2012 11

Interleaving Probability of sampling

1. 0.5

2. 0.25

3. 0.125

4. 0.0625

5. 0.03125

RANDOM PARTIAL ORDER SAMPLING

ALGORITHM - RAPOS

Mittwoch, 21. März 2012 12

RAPOS (1)

 Rapos(){
s := s0;

schedulable := Enabled(s);

while(Enabled(s) ≠ ∅){

 scheduled := RandIndependetSubset(schedulable);

 for each t ϵ scheduled

 s := Execute(s,t);

 schedulable := {t’ ϵ Enabled(s) | ∃t ϵ scheduled

 such that t and t’ are dependent};

 if (schedulable = ∅)

 add a random element from Enabled(s) to schedulable;

}

If (Alive(s) ≠ ∅){

 print „Deadlock Detected“;

}

 }
Mittwoch, 21. März 2012 13

RAPOS (3)

Sets assigned to scheduled after the 1st iteration

 The two partial orders will be sampled with probability 0.25 and 0.75.

 Assert violation with 0.25. Higher than SRA, 0.03125.

Mittwoch, 21. März 2012 14

Sets Sets Prob. to

be in

scheduled

Interleav. Interleav.

Prob.

1. {y=1;} 0.25 5. 0.25

2. {if(x==4) assert(false);} 0.25 1. 0.25

3. {y=1, if(x==4) assert(false);} 0.5 1. or 2. 0.5

Results (1)

Number of Partial Orders Sampled after a Fixed Number of

Executions

Mittwoch, 21. März 2012 15

Results (2)

Expected Number of Executions Required to Detect a Defect

Mittwoch, 21. März 2012 16

RAPOS vs SRA

 Higher number of partial orders with fixed number of

executions

 Detecting defects after significantly less number of

executions

 More uniform probability of sampling a partial order

Mittwoch, 21. März 2012 17

Questions?

Mittwoch, 21. März 2012 18

Simple Randomized Algorithm (2)

 Initially x = 0 and y = 0

 Thread 1: Thread 2:

 y = 1; if(x==4) assert(false);

 y = 2;

 y = 3;

 x = 4;

Mittwoch, 21. März 2012 19

 If (x==4) assert(false); y=1; y=2; y=3; x=4;

 y=1; If (x==4) assert(false); y=2; y=3; y=4;

 y=1; y=2; If (x==4) assert(false); y=3; y=4;

 y=1; y=2; y=3; If (x==4) assert(false); y=4;

 y=1; y=2; y=3; y=4; If (x==4) assert(false);

