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Traditional testing 

 How does it work? 
 Repeatedly execute the program in order to get different 

interleavings. 

 

 Testing problems: 
 In a particular environment  

 Testing depends on the underlying operating system or VM. 

 

 Testing is attractive because: 
 Inexpensive in comparison with model checking or verification. 

 Scales to very large programs. 

 

 

 

 
Mittwoch, 21. März 2012 4 



Model checking 

 How does it work? 
 Systematically controls the thread scheduler to get all behaviours of 

a program. 

 

 Problems: 
 Can end up in a localized search of the state-space. 

 Does not scale with program size. 

 The number of possible interleavings often grows exponetially 
with the length of execution - STATE-EXPLOSION PROBLEM. 
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Partial order technique(1) 

 Starts from the fact: 
 A number of interleavings are equivalent to each other because  they 

correspond to different execution orders of various non-interacting 
(or independent)  instructions from concurrent threads. 

 Different execution orders of  non-inderacting instructions from 
concurrent threads result in the same overall final state. 

 

 The result is:  
 If one execution order finds a defect => all equivalent execution 

orders will detect the defect. 
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Partial order technique(2) 

 Happens-before relation defines a partial order over all the 

instructions executed during an execution. 

 

 Concurrent executions with the same happens-before 

relation are equivalent and the set of them is a PARTIAL 

ORDER.  
 

 Partial order advantages: 
 Addresses the state-explosion problem  

 Helping the model checkers to reduce the search space 
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Randomized search 

 How does it work? 
 Picks up a random thread to execute at every execution point where 

a potential thread switch can happen. 

 

 Why is it better than traditional testing? 
 Explicitly tries to control the scheduling of threads.  

 Explores wide variety of interleavings without getting stuck in a 
localized search. 

 

 Problems: 
 Samples non-equivalent thread interleavings in a very non-uniform 

way => some partial orders are sampled more often than the others. 
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SIMPLE RANDOMIZED ALGORITHM 
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Simple Randomized Algorithm (1) 

  

 RandomExecutionSimple(){ 

 s := s0; 

 while(Enabled(s) ≠ ∅) { 

  take a random t out of Enabled(s); 

  s := Execute(s,t); 

 } 

 if (Alive(s) ≠ ∅) { 

 print “Deadlock Detected“; 

 } 

   } 

 

 

Mittwoch, 21. März 2012 10 



Simple Randomized Algorithm (3) 

 

 

 

 

 

 

 

 

 

 

 One partial order with 0.96875 and the other with 0.03125. 

 Ideally, sampling with probability of 0.5.  
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Interleaving Probability of sampling 

1. 0.5 

2. 0.25 

3. 0.125 

4. 0.0625 

5. 0.03125 



RANDOM PARTIAL ORDER SAMPLING 

ALGORITHM - RAPOS 
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RAPOS (1) 

 Rapos(){ 
s := s0; 

schedulable := Enabled(s); 

while(Enabled(s) ≠ ∅){ 

 scheduled := RandIndependetSubset(schedulable); 

 for each t ϵ scheduled  

  s := Execute(s,t); 

  schedulable := {t’ ϵ Enabled(s) | ∃t ϵ scheduled 

    such that t and t’ are dependent}; 

 if (schedulable = ∅) 

  add a random element from Enabled(s) to schedulable; 

} 

If (Alive(s) ≠ ∅){ 

 print „Deadlock Detected“; 

} 

  } 
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RAPOS (3) 

           
 

 

 

 

 

 

 

Sets assigned to scheduled after the 1st iteration 

 

 

 The two partial orders will be sampled with probability 0.25 and 0.75. 

 Assert violation with 0.25. Higher than SRA, 0.03125. 
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Sets  Sets Prob. to 

be in 

scheduled  

Interleav. Interleav.

Prob. 

1. {y=1;}  0.25 5. 0.25 

2. {if(x==4) assert(false);}  0.25 1. 0.25 

3. {y=1, if(x==4) assert(false);}  0.5 1. or 2. 0.5 



Results (1) 

 

 

 

 

 

 

 

  

 

 

Number of Partial Orders Sampled after a Fixed Number of 

Executions 
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Results (2) 

 

 

 

 

 

 

 

  

 

 

Expected Number of Executions Required to Detect a Defect  
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RAPOS vs SRA 

 

 Higher number of partial orders with fixed number of 

executions 

 

 Detecting defects after significantly less number of 

executions 

 

 More uniform probability of sampling a partial order 
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Questions? 
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Simple Randomized Algorithm (2) 

 Initially x = 0 and y = 0 

 Thread 1: Thread 2: 

 y = 1;  if(x==4) assert(false); 

 y = 2; 

  y = 3; 

 x = 4; 
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  If (x==4) assert(false); y=1; y=2; y=3; x=4; 

  y=1; If (x==4) assert(false); y=2; y=3; y=4; 

  y=1; y=2; If (x==4) assert(false); y=3; y=4; 

  y=1; y=2; y=3; If (x==4) assert(false);  y=4; 

  y=1; y=2; y=3; y=4; If (x==4) assert(false);  


