
Effective Random Testing of Concurrent

Programs

by Koushik Sen, UC Berkeley, CA, USA

Presented by: Marko Peric

Content

Mittwoch, 21. März 2012 2

• Testing methods of concurrent programs

• Traditional method and its problems

• Model checking and the state-explosion problem

• Partial order reduction technique

• Randomized search

• Simple Randomized Algorithm

• RAPOS – Random Partial Order Sampling Algorithm

• Results

TESTING METHODS OF CONCURRENT

PROGRAMS

Mittwoch, 21. März 2012 3

Traditional testing

 How does it work?
 Repeatedly execute the program in order to get different

interleavings.

 Testing problems:
 In a particular environment

 Testing depends on the underlying operating system or VM.

 Testing is attractive because:
 Inexpensive in comparison with model checking or verification.

 Scales to very large programs.

Mittwoch, 21. März 2012 4

Model checking

 How does it work?
 Systematically controls the thread scheduler to get all behaviours of

a program.

 Problems:
 Can end up in a localized search of the state-space.

 Does not scale with program size.

 The number of possible interleavings often grows exponetially
with the length of execution - STATE-EXPLOSION PROBLEM.

Mittwoch, 21. März 2012 5

Partial order technique(1)

 Starts from the fact:
 A number of interleavings are equivalent to each other because they

correspond to different execution orders of various non-interacting
(or independent) instructions from concurrent threads.

 Different execution orders of non-inderacting instructions from
concurrent threads result in the same overall final state.

 The result is:
 If one execution order finds a defect => all equivalent execution

orders will detect the defect.

Mittwoch, 21. März 2012 6

Partial order technique(2)

 Happens-before relation defines a partial order over all the

instructions executed during an execution.

 Concurrent executions with the same happens-before

relation are equivalent and the set of them is a PARTIAL

ORDER.

 Partial order advantages:
 Addresses the state-explosion problem

 Helping the model checkers to reduce the search space

Mittwoch, 21. März 2012 7

Randomized search

 How does it work?
 Picks up a random thread to execute at every execution point where

a potential thread switch can happen.

 Why is it better than traditional testing?
 Explicitly tries to control the scheduling of threads.

 Explores wide variety of interleavings without getting stuck in a
localized search.

 Problems:
 Samples non-equivalent thread interleavings in a very non-uniform

way => some partial orders are sampled more often than the others.

Mittwoch, 21. März 2012 8

SIMPLE RANDOMIZED ALGORITHM

Mittwoch, 21. März 2012 9

Simple Randomized Algorithm (1)

 RandomExecutionSimple(){

 s := s0;

 while(Enabled(s) ≠ ∅) {

 take a random t out of Enabled(s);

 s := Execute(s,t);

 }

 if (Alive(s) ≠ ∅) {

 print “Deadlock Detected“;

 }

 }

Mittwoch, 21. März 2012 10

Simple Randomized Algorithm (3)

 One partial order with 0.96875 and the other with 0.03125.

 Ideally, sampling with probability of 0.5.

Mittwoch, 21. März 2012 11

Interleaving Probability of sampling

1. 0.5

2. 0.25

3. 0.125

4. 0.0625

5. 0.03125

RANDOM PARTIAL ORDER SAMPLING

ALGORITHM - RAPOS

Mittwoch, 21. März 2012 12

RAPOS (1)

 Rapos(){
s := s0;

schedulable := Enabled(s);

while(Enabled(s) ≠ ∅){

 scheduled := RandIndependetSubset(schedulable);

 for each t ϵ scheduled

 s := Execute(s,t);

 schedulable := {t’ ϵ Enabled(s) | ∃t ϵ scheduled

 such that t and t’ are dependent};

 if (schedulable = ∅)

 add a random element from Enabled(s) to schedulable;

}

If (Alive(s) ≠ ∅){

 print „Deadlock Detected“;

}

 }
Mittwoch, 21. März 2012 13

RAPOS (3)

Sets assigned to scheduled after the 1st iteration

 The two partial orders will be sampled with probability 0.25 and 0.75.

 Assert violation with 0.25. Higher than SRA, 0.03125.

Mittwoch, 21. März 2012 14

Sets Sets Prob. to

be in

scheduled

Interleav. Interleav.

Prob.

1. {y=1;} 0.25 5. 0.25

2. {if(x==4) assert(false);} 0.25 1. 0.25

3. {y=1, if(x==4) assert(false);} 0.5 1. or 2. 0.5

Results (1)

Number of Partial Orders Sampled after a Fixed Number of

Executions

Mittwoch, 21. März 2012 15

Results (2)

Expected Number of Executions Required to Detect a Defect

Mittwoch, 21. März 2012 16

RAPOS vs SRA

 Higher number of partial orders with fixed number of

executions

 Detecting defects after significantly less number of

executions

 More uniform probability of sampling a partial order

Mittwoch, 21. März 2012 17

Questions?

Mittwoch, 21. März 2012 18

Simple Randomized Algorithm (2)

 Initially x = 0 and y = 0

 Thread 1: Thread 2:

 y = 1; if(x==4) assert(false);

 y = 2;

 y = 3;

 x = 4;

Mittwoch, 21. März 2012 19

 If (x==4) assert(false); y=1; y=2; y=3; x=4;

 y=1; If (x==4) assert(false); y=2; y=3; y=4;

 y=1; y=2; If (x==4) assert(false); y=3; y=4;

 y=1; y=2; y=3; If (x==4) assert(false); y=4;

 y=1; y=2; y=3; y=4; If (x==4) assert(false);

