
Grace: Safe Multithreaded Programming
for C/C++

Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. 2009

Speaker: Ivo Steinmann

2Concepts of Concurrent ComputationDienstag, 3. April 2012

Concurrency Problems

 Cyclic lock acquisition
→ deadlocks

 Unguarded update
→ race conditions

 Unguarded, interleaved updates
→ atomicity violations

 Threads scheduled in unexpected order
→ order violations

3Concepts of Concurrent ComputationDienstag, 3. April 2012

Solution: Grace

 Locks converted to no-ops
→ deadlocks

 All updates committed deterministically (sequential)
→ race conditions

 Threads run atomically
→ atomicity violations

 Threads execute in program order (sequential)
→ order violations

4Concepts of Concurrent ComputationDienstag, 3. April 2012

Sequential Semantics (1)

 Restricted to fork-join parallelism

// Run f(x) and g(y) in parallel

t1 = spawn f(x);

t2 = spawn g(y);

// Wait for both to complete

sync;

5Concepts of Concurrent ComputationDienstag, 3. April 2012

Sequential Semantics (2)

 Program is behaviorally turned into its sequential
counterpart → serial elision

// Run f(x) and g(y) in parallel.

t1 = spawn f(x);

t2 = spawn g(y);

// Wait for both to complete

sync;

// Run f(x) and g(y) in parallel.

t1 = spawn f(x);

t2 = spawn g(y);

// Wait for both to complete

sync;

// Run f(x) and g(y) in parallel.

t1 = spawn f(x);

t2 = spawn g(y);

// Wait for both to complete

sync;

 thread spawn → sequential
 lock operations → no-ops

6Concepts of Concurrent ComputationDienstag, 3. April 2012

Sequential Semantics (3)

 Threads run concurrently
 Commited in sequential order

 Each thread waits for its logical
predecessor

time

f(x)

g(y) commit g(y)

commit f(x)

// Run f(x) and g(y) in parallel.
t1 = spawn f(x);
t2 = spawn g(y);

// Wait for both to complete
sync;

Transactional Memory required

7Concepts of Concurrent ComputationDienstag, 3. April 2012

Transactional Memory (1)

 Updates are committed in program order
 Some form of transactional memory required
 atomic clause for short transactions
 What about long-lived transactions?

 Solution: use processes instead of threads (forks)
 Standard memory protection functions
 Signal handlers to track reads/writes
 Shared address space

8Concepts of Concurrent ComputationDienstag, 3. April 2012

Transactional Memory (2)

 Memory mapped files → shared memory
 Array of version numbers (one per page)
 Shared mapping → latest commit state
 Local (per-process), copy-on-write mapping → working set

Global Memory

Heap & Globals

Thread (Process)

shared mapping

local mapping

version

version

version

9Concepts of Concurrent ComputationDienstag, 3. April 2012

Transactional Memory (3)

 Local mapping
 Protection of all pages set to PROT_NONE
 First access triggers a pagefault (SEGV)

 Read: set protection to PROT_READ
 Write: set protection to PROT_READ | PROT_WRITE and update version

 Copy on write semantics!

10Concepts of Concurrent ComputationDienstag, 3. April 2012

8

Transactional Memory (4) - commit

1 3 1 4 8 2 4

1 3 1 4 9 2 4

3

3 8

3 8

1. thread (process) begin

2. read page 1

3. read page 4

4. write page 4

5. thread end

6. wait for logical predecessor

commited (shared) pages uncommited (private) pages

7. consistency checks
8. commit

protected
read-only
unprotected

11Concepts of Concurrent ComputationDienstag, 3. April 2012

9

Transactional Memory (5) - rollback

1 3 1 4 8 2 4

1 3 1 4 2 4

3

3 8

3 8

1. thread (process) begin

2. read page 1

3. read page 4

4. write page 4

5. thread end

6. wait for logical predecessor

commited (shared) pages uncommited (private) pages

7. consistency checks
8. rollback → reexecute

read-only
unprotected

12Concepts of Concurrent ComputationDienstag, 3. April 2012

Thread Execution (1)

 Initialization
 Save execution context

 program counter
 registers
 stack contents

 Set page protection to PROT_NONE

 Execution
 Track page accesses over SEGV protection faults
 Version control

13Concepts of Concurrent ComputationDienstag, 3. April 2012

Thread Execution (2)

 Completion
 Commit attempts at

 end of main()
 end of individual thread
 right before a child thread spawn
 right before joining another thread

 No commit required when no change

14Concepts of Concurrent ComputationDienstag, 3. April 2012

Thread Execution (3)

 Committing
 lock all memory mappings (interprocess mutex)
 perform consistency checks (check version numbers)

 success: copy contents of each page into shared images
 fail: rollback and reexecute

15Concepts of Concurrent ComputationDienstag, 3. April 2012

Benchmarks

 histogram Analyzes images' RGB components
 kmeans Iterative clustering of 3-D points
 linear_regression

Computes best fit line for a set of points
 matmul Recursive matrix-multiply
 pca Principal component analysis on matrix
 string_match Searches file for encrypted word

16Concepts of Concurrent ComputationDienstag, 3. April 2012

Benchmarks

Commits Rollbacks Pages Read Pages Written

histogram 9 0 7 6

kmeans 6273 4887 404 2

linear_reg 9 0 6 5

matmul 11 0 4100 1865

pca 22 0 3 2

string_match 11 0 6 4

17Concepts of Concurrent ComputationDienstag, 3. April 2012

Verification – Deadlocks
thread1() {

lock(A);

lock(B);

// ...do something

unlock(B);

unlock(A);

}

thread2() {

lock(B);

lock(A);

// ...do something

unlock(A);

unlock(B);

}

18Concepts of Concurrent ComputationDienstag, 3. April 2012

Verification – Atomicity violations

thread1() {

if (thd->proc_info) {

fputs(thd->proc_info, ...);

}

}

thread2() {

thd->proc_info = NULL;

}

19Concepts of Concurrent ComputationDienstag, 3. April 2012

Verification – Race conditions

int counter = 0;

increment() {

print(counter);

int temp = counter;

temp++;

counter = temp;

print(counter);

}

thread1() { increment(); }
thread2() { increment(); }

20Concepts of Concurrent ComputationDienstag, 3. April 2012

Verification – Order violations
char* proc_info;

thread1() {

proc_info = malloc(256);

}

thread2() {

// maybe executed before thread1()

strcpy(proc_info, “abc“);

}

main() {

spawn thread1();

spawn thread2();

}

21Concepts of Concurrent ComputationDienstag, 3. April 2012

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21

