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Concurrency Problems

 Cyclic lock acquisition 
→ deadlocks

 Unguarded update
→ race conditions

 Unguarded, interleaved updates
→ atomicity violations

 Threads scheduled in unexpected order
→ order violations
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Solution: Grace

 Locks converted to no-ops
→ deadlocks

 All updates committed deterministically (sequential)
→ race conditions

 Threads run atomically
→ atomicity violations

 Threads execute in program order (sequential)
→ order violations
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Sequential Semantics (1)

 Restricted to fork-join parallelism

// Run f(x) and g(y) in parallel

t1 = spawn f(x);

t2 = spawn g(y);

// Wait for both to complete

sync;
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Sequential Semantics (2)

 Program is behaviorally turned into its sequential 
counterpart → serial elision

// Run f(x) and g(y) in parallel.

t1 = spawn f(x);

t2 = spawn g(y);

// Wait for both to complete

sync;

// Run f(x) and g(y) in parallel.

t1 = spawn f(x);

t2 = spawn g(y);

// Wait for both to complete

sync;

// Run f(x) and g(y) in parallel.

t1 = spawn f(x);

t2 = spawn g(y);

// Wait for both to complete

sync;

 thread spawn → sequential
 lock operations → no-ops
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Sequential Semantics (3)

 Threads run concurrently
 Commited in sequential order

 Each thread waits for its logical
predecessor

time

f(x)

g(y) commit g(y)

commit f(x)

// Run f(x) and g(y) in parallel.
t1 = spawn f(x);
t2 = spawn g(y);

// Wait for both to complete
sync;

Transactional Memory required
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Transactional Memory (1)

 Updates are committed in program order
 Some form of transactional memory required
 atomic clause for short transactions
 What about long-lived transactions?

 Solution: use processes instead of threads (forks)
 Standard memory protection functions
 Signal handlers to track reads/writes
 Shared address space
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Transactional Memory (2)

 Memory mapped files → shared memory
 Array of version numbers (one per page)
 Shared mapping → latest commit state
 Local (per-process), copy-on-write mapping → working set

Global  Memory

Heap & Globals

Thread (Process)

shared mapping

local mapping

version

version

version
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Transactional Memory (3)

 Local mapping
 Protection of all pages set to PROT_NONE
 First access triggers a pagefault (SEGV)

 Read: set protection to PROT_READ
 Write: set protection to PROT_READ | PROT_WRITE and update version

 Copy on write semantics!
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8

Transactional Memory (4) - commit

1 3 1 4 8 2 4

1 3 1 4 9 2 4

3

3 8

3 8

1. thread (process) begin

2. read page 1

3. read page 4

4. write page 4

5. thread end

6. wait for logical predecessor

commited (shared) pages uncommited (private) pages

7. consistency checks
8. commit

protected
read-only
unprotected
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9

Transactional Memory (5) - rollback

1 3 1 4 8 2 4

1 3 1 4 2 4

3

3 8

3 8

1. thread (process) begin

2. read page 1

3. read page 4

4. write page 4

5. thread end

6. wait for logical predecessor

commited (shared) pages uncommited (private) pages

7. consistency checks
8. rollback → reexecute

read-only
unprotected
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Thread Execution (1)

 Initialization
 Save execution context

 program counter
 registers
 stack contents

 Set page protection to PROT_NONE

 Execution
 Track page accesses over SEGV protection faults
 Version control
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Thread Execution (2)

 Completion
 Commit attempts at

 end of main()
 end of individual thread
 right before a child thread spawn
 right before joining another thread

 No commit required when no change
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Thread Execution (3)

 Committing
 lock all memory mappings (interprocess mutex)
 perform consistency checks (check version numbers)

 success: copy contents of each page into shared images
 fail: rollback and reexecute
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Benchmarks

 histogram Analyzes images' RGB components
 kmeans Iterative clustering of 3-D points
 linear_regression

Computes best fit line for a set of points
 matmul Recursive matrix-multiply
 pca Principal component analysis on matrix
 string_match Searches file for encrypted word
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Benchmarks

Commits Rollbacks Pages Read Pages Written

histogram 9 0 7 6

kmeans 6273 4887 404 2

linear_reg 9 0 6 5

matmul 11 0 4100 1865

pca 22 0 3 2

string_match 11 0 6 4
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Verification – Deadlocks
thread1() {

lock(A);

lock(B);

// ...do something

unlock(B);

unlock(A);

}

thread2() {

lock(B);

lock(A);

// ...do something

unlock(A);

unlock(B);

}
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Verification – Atomicity violations

thread1() {

if (thd->proc_info) {

fputs(thd->proc_info, ...);

}

}

thread2() {

thd->proc_info = NULL;

}
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Verification – Race conditions

int counter = 0;

increment() {

print(counter);

int temp = counter;

temp++;

counter = temp;

print(counter);

}

thread1() { increment(); }
thread2() { increment(); }
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Verification – Order violations
char* proc_info;

thread1() {

proc_info = malloc(256);

}

thread2() {

// maybe executed before thread1()

strcpy(proc_info, “abc“);

}

main() {

spawn thread1();

spawn thread2();

}
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Questions?
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