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•Mutual Exclusion

At most one process in the 
critical section at any time

•Abortable

A waiting process may abort its 
attempt to enter the critical section

•Adaptive and Efficient

As few remote references as possible 
Bounded space and time complexities
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Previous Attempts

� M. L. Scott and W.N. Scherer III. 

Scalable queue-based spin locks with timeout. (June 

2001)

An aborting process may be blocked.

� M. L. Scott. 

Non-blocking timeout in scalable queue-based spin 
locks. (July 2002)

Unbounded worst-case time and space complexity
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Basic Flow
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The behavior of LL and SC

� From Wiki, load-link (LL) and store-conditional (SC) are a 
pair of instructions that together implement a lock-free 
atomic read-modify-write operation. 

� From this paper, it says

The operation LL(O) returns O's value. 

The operation SC(O, v) by a process p "succeeds" if and 
only if no process performed a successful SC on O since 
p's latest LL. 

If SC succeeds, it changes O's value to v and returns true. 
Otherwise, O's value remains unchanged and SC returns 
false.
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procedure Entry(p) 
1. Wait[p] = true 
2. inc(C, 1) 
3. t = read(C) 
4. insert(Q, [p, t]) 
5. promote() 
6. promote()
7. wait till Wait[p] = false

procedure Abort(p)
11. delete(Q, [p, t])
12. promote()
13. if CSowner = p then
14. CSowner = ⊥
15. promote()

procedure Exit(p)
8.   delete(Q, [p, t])
9.   CSowner = ⊥
10. promote() 

procedure promote()
16. if LL( CSowner) ≠ ⊥ then return
17. [q,t'] = findmin(Q)
18. if q ≠ ⊥ then LL(Wait[q])
19. if SC( CSowner, q) then
20. if q ≠ ⊥ then SC(Wait[q],false)

Note: Code shown here is for process p.



Scenario 1

Assume two “normal 
processes” P1 and P2
would go through the 
Entry Section, Critical 
Section, Exit Section and 
then Remainder Section, 
i.e. they will not abort 
their attempts at the 
moment.
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procedure Entry(p) 
1. Wait[p] = true 
2. inc(C, 1) 
3. t = read(C) 
4. insert(Q, [p, t]) 
5. promote() 
6. promote()
7. wait till Wait[p] = false

procedure Exit(p)
8.   delete(Q, [p, t])
9.   CSowner = ⊥
10. promote() 

procedure promote()
16. if LL( CSowner) ≠ ⊥ then return
17. [q,t'] = findmin(Q)
18. if q ≠ ⊥ then LL(Wait[q])
19. if SC( CSowner, q) then
20. if q ≠ ⊥ then SC(Wait[q],false)

Initialization:
CSowner = ⊥
C = 1
Q = {[P1,1]}
P2 -> 1

Wait[p1] = true
C = 2, t = 2
Q = {[p1,1],[p2,2]}
q = p1, t’ = 1
CSowner = p1
Wait[p1] = false

P1 -> 7
Enter the Critical 
Section and exit
P1 -> 8

Q = {[p2,2]}
CSowner = ⊥
q = p2, t’ = 2
CSowner = p2
Wait[p2] = false 



Scenario 2

Assume a “normal 
process” P1 would go 
through the Entry Section, 
Critical Section, Exit 
Section and then 
Remainder Section, while 
P2 would abort its 
attempt when it is 
busywaiting.
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procedure Entry(p) 
1. Wait[p] = true 
2. inc(C, 1) 
3. t = read(C) 
4. insert(Q, [p, t]) 
5. promote() 
6. promote()
7. wait till Wait[p] = false

procedure promote()
16. if LL(CSowner) ≠ ⊥ then return
17. [q,t'] = findmin(Q)
18. if q ≠ ⊥ then LL(Wait[q])
19. if SC(CSowner, q) then
20. if q ≠ ⊥ then SC(Wait[q],false)

P1 -> 7
Wait[p1] = true

P2 -> 17
q = p1, t’ = 1

P2 -> 18 : LL(Wait[p1])
P2 -> 19

CSowner = p1
P1 -> 7 

Abort(), Remainder
reinitiate a new attempt
P1 -> 1

Wait[p1] = true
t = 11
Q = {……,[p1,11]}

P1 -> 7 : busywait loop
P2 -> 20
If it is a write,

Wait[p1] = false
If it is a SC, it fails



Scenario 3

Assume three processes 
P1, P2, P3 and P1 is going 
to abort its attempt when 
it is busywaiting.
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procedure promote()
16. if LL(CSowner) ≠ ⊥ then return
17. [q,t'] = findmin(Q)
18. if q ≠ ⊥ then LL(Wait[q])
19. if SC(CSowner, q) then
20. if q ≠ ⊥ then SC(Wait[q],false)

P3 -> 17
q = p1, t1 = 1

P1 -> 11 : delete(Q,[p1,1])
If Abort() finishes here �
deadlock
P1 -> 12

q = p2, t’ = 2
Advance p2 into the 
Critical Section
(but this could also fail)
P1 - > 13 double check
We are confident that if 
CSowner doesn’t contain 
p1 by this moment, 
CSowner will never be 
assigned to be p1 later, 
when p1 is in the 
Remainder Section.

procedure Abort(p)
11. delete(Q, [p, t])
12. promote()
13. if CSowner = p then
14. CSowner = ⊥
15. promote()



Scenario 4

� Assume two processes P1, P2 and P1 is in 
the Critical Section while P2 is in the 
Remainder Section.

� Suppose Line 6 is removed.
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procedure Entry(p) 
1. Wait[p] = true 
2. inc(C, 1) 
3. t = read(C) 
4. insert(Q, [p, t]) 
5. promote() 
6. promote()
7. wait till Wait[p] = false

procedure Exit(p)
8.   delete(Q, [p, t])
9.   CSowner = ⊥
10. promote() 

procedure promote()
16. if LL( CSowner) ≠ ⊥ then return
17. [q,t'] = findmin(Q)
18. if q ≠ ⊥ then LL(Wait[q])
19. if SC( CSowner, q) then
20. if q ≠ ⊥ then SC(Wait[q],false)

P1 -> 8…18
q = ⊥, t’ = ⊥

P2 -> 1,2,3,4,16,17,18
q = p2

P1 -> 19
CSowner = ⊥

P2 -> 19 
SC fails because p1’s 

successful SC occurred 
between p2’s LL and SC 
on CSowner.
P2 -> 6

p2 would be written in 
CSowner successfully and 
SC(Wait[p2], false) on Line 
20 would also be 
successful.
P2 -> 7 : busywait loop

The loop will never 
terminate.



Very Basic and Informal 
Proofs

� (P1) Mutual Exclusion

� (P2) Lockout-freedom
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� (P3) Bounded Abort

� (P4) Bounded Exit

� (P5) First-Come-First-Served (FCFS)

� (P6) Local-spin

� (P7) Adaptivity
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procedure Entry(p) 
1. Wait[p] = true 
2. inc(C, 1) 
3. t = read(C) 
4. insert(Q, [p, t]) 
5. promote() 
6. promote()
7. wait till Wait[p] = false

procedure Abort(p)
11. delete(Q, [p, t])
12. promote()
13. if CSowner = p then
14. CSowner = ⊥
15. promote()

procedure Exit(p)
8.   delete(Q, [p, t])
9.   CSowner = ⊥
10. promote() 

procedure promote()
16. if LL( CSowner) ≠ ⊥ then return
17. [q,t'] = findmin(Q)
18. if q ≠ ⊥ then LL(Wait[q])
19. if SC( CSowner, q) then
20. if q ≠ ⊥ then SC(Wait[q],false)

Note: Code shown here is for process p.



Very Basic and Informal 
Proofs

� (P1) Mutual Exclusion

� (P2) Lockout-freedom           (Scenario 4)
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Deadlock-freedom + 
Starvation-freedom

� (P3) Bounded Abort

� (P4) Bounded Exit

� (P5) First-Come-First-Served (FCFS)

� (P6) Local-spin

� (P7) Adaptivity
The time complexity depends only on point contention k and not 
on the number of processes n for which the algorithm is designed. 
In practice, k << n.



Conclusion and open 
problems

�Conclusion: The first local-spin abortable mutual 
exclusion algorithm with bounded complexities.

�P1: The algorithm uses token numbers that grow 
without bound. 

�P2: Either design an abortable algorithm of O(1) 
remote reference complexity or prove its 
impossibility.

This algorithm has O(min(k, log n)) remote reference complexity.
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19Influences – 29 Citations

� Adaptive randomized mutual exclusion in sub-
logarithmic expected time by Danny Hendler & Philipp 

Woelfel in 2010

“We present a randomized adaptive mutual exclusion algorithms 
with O(log k/loglog k) expected amortized RMR complexity…This 
establishes that sub-logarithmic adaptive mutual exclusion, using 
reads and writes only, is possible.”

� Group mutual exclusion in O(log n) RMR by Vibhor Bhatt 

& Chien-Chung Huang in 2010

“We show that in the CC model, using registers and LL/SC variables, 
our algorithm achieves O(min(log n,k)) RMR, which is so far the 
best. Moreover, given a recent result of Attiya, Hendler and 
Woelfel showing that exclusion problems have a Ω(log n) RME 
lower bound using registers, comparison primitives and LL/SC 
variables.”



Discussion
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