
Adaptive and Efficient
Abortable Mutual

Exclusion

Paper by Prasad Jayanti, 2003

Presented by Zhuoya Xiang, Zoe

1

•Mutual Exclusion

At most one process in the
critical section at any time

•Abortable

A waiting process may abort its
attempt to enter the critical section

•Adaptive and Efficient

As few remote references as possible
Bounded space and time complexities

2

Previous Attempts

� M. L. Scott and W.N. Scherer III.

Scalable queue-based spin locks with timeout. (June

2001)

An aborting process may be blocked.

� M. L. Scott.

Non-blocking timeout in scalable queue-based spin
locks. (July 2002)

Unbounded worst-case time and space complexity

3

Basic Flow

4

The behavior of LL and SC

� From Wiki, load-link (LL) and store-conditional (SC) are a
pair of instructions that together implement a lock-free
atomic read-modify-write operation.

� From this paper, it says

The operation LL(O) returns O's value.

The operation SC(O, v) by a process p "succeeds" if and
only if no process performed a successful SC on O since
p's latest LL.

If SC succeeds, it changes O's value to v and returns true.
Otherwise, O's value remains unchanged and SC returns
false.

5

6
procedure Entry(p)
1. Wait[p] = true
2. inc(C, 1)
3. t = read(C)
4. insert(Q, [p, t])
5. promote()
6. promote()
7. wait till Wait[p] = false

procedure Abort(p)
11. delete(Q, [p, t])
12. promote()
13. if CSowner = p then
14. CSowner = ⊥
15. promote()

procedure Exit(p)
8. delete(Q, [p, t])
9. CSowner = ⊥
10. promote()

procedure promote()
16. if LL(CSowner) ≠ ⊥ then return
17. [q,t'] = findmin(Q)
18. if q ≠ ⊥ then LL(Wait[q])
19. if SC(CSowner, q) then
20. if q ≠ ⊥ then SC(Wait[q],false)

Note: Code shown here is for process p.

Scenario 1

Assume two “normal
processes” P1 and P2
would go through the
Entry Section, Critical
Section, Exit Section and
then Remainder Section,
i.e. they will not abort
their attempts at the
moment.

7

8
procedure Entry(p)
1. Wait[p] = true
2. inc(C, 1)
3. t = read(C)
4. insert(Q, [p, t])
5. promote()
6. promote()
7. wait till Wait[p] = false

procedure Exit(p)
8. delete(Q, [p, t])
9. CSowner = ⊥
10. promote()

procedure promote()
16. if LL(CSowner) ≠ ⊥ then return
17. [q,t'] = findmin(Q)
18. if q ≠ ⊥ then LL(Wait[q])
19. if SC(CSowner, q) then
20. if q ≠ ⊥ then SC(Wait[q],false)

Initialization:
CSowner = ⊥
C = 1
Q = {[P1,1]}
P2 -> 1

Wait[p1] = true
C = 2, t = 2
Q = {[p1,1],[p2,2]}
q = p1, t’ = 1
CSowner = p1
Wait[p1] = false

P1 -> 7
Enter the Critical
Section and exit
P1 -> 8

Q = {[p2,2]}
CSowner = ⊥
q = p2, t’ = 2
CSowner = p2
Wait[p2] = false

Scenario 2

Assume a “normal
process” P1 would go
through the Entry Section,
Critical Section, Exit
Section and then
Remainder Section, while
P2 would abort its
attempt when it is
busywaiting.

9

10
procedure Entry(p)
1. Wait[p] = true
2. inc(C, 1)
3. t = read(C)
4. insert(Q, [p, t])
5. promote()
6. promote()
7. wait till Wait[p] = false

procedure promote()
16. if LL(CSowner) ≠ ⊥ then return
17. [q,t'] = findmin(Q)
18. if q ≠ ⊥ then LL(Wait[q])
19. if SC(CSowner, q) then
20. if q ≠ ⊥ then SC(Wait[q],false)

P1 -> 7
Wait[p1] = true

P2 -> 17
q = p1, t’ = 1

P2 -> 18 : LL(Wait[p1])
P2 -> 19

CSowner = p1
P1 -> 7

Abort(), Remainder
reinitiate a new attempt
P1 -> 1

Wait[p1] = true
t = 11
Q = {……,[p1,11]}

P1 -> 7 : busywait loop
P2 -> 20
If it is a write,

Wait[p1] = false
If it is a SC, it fails

Scenario 3

Assume three processes
P1, P2, P3 and P1 is going
to abort its attempt when
it is busywaiting.

11

12

procedure promote()
16. if LL(CSowner) ≠ ⊥ then return
17. [q,t'] = findmin(Q)
18. if q ≠ ⊥ then LL(Wait[q])
19. if SC(CSowner, q) then
20. if q ≠ ⊥ then SC(Wait[q],false)

P3 -> 17
q = p1, t1 = 1

P1 -> 11 : delete(Q,[p1,1])
If Abort() finishes here �
deadlock
P1 -> 12

q = p2, t’ = 2
Advance p2 into the
Critical Section
(but this could also fail)
P1 - > 13 double check
We are confident that if
CSowner doesn’t contain
p1 by this moment,
CSowner will never be
assigned to be p1 later,
when p1 is in the
Remainder Section.

procedure Abort(p)
11. delete(Q, [p, t])
12. promote()
13. if CSowner = p then
14. CSowner = ⊥
15. promote()

Scenario 4

� Assume two processes P1, P2 and P1 is in
the Critical Section while P2 is in the
Remainder Section.

� Suppose Line 6 is removed.

13

14
procedure Entry(p)
1. Wait[p] = true
2. inc(C, 1)
3. t = read(C)
4. insert(Q, [p, t])
5. promote()
6. promote()
7. wait till Wait[p] = false

procedure Exit(p)
8. delete(Q, [p, t])
9. CSowner = ⊥
10. promote()

procedure promote()
16. if LL(CSowner) ≠ ⊥ then return
17. [q,t'] = findmin(Q)
18. if q ≠ ⊥ then LL(Wait[q])
19. if SC(CSowner, q) then
20. if q ≠ ⊥ then SC(Wait[q],false)

P1 -> 8…18
q = ⊥, t’ = ⊥

P2 -> 1,2,3,4,16,17,18
q = p2

P1 -> 19
CSowner = ⊥

P2 -> 19
SC fails because p1’s

successful SC occurred
between p2’s LL and SC
on CSowner.
P2 -> 6

p2 would be written in
CSowner successfully and
SC(Wait[p2], false) on Line
20 would also be
successful.
P2 -> 7 : busywait loop

The loop will never
terminate.

Very Basic and Informal
Proofs

� (P1) Mutual Exclusion

� (P2) Lockout-freedom

15

� (P3) Bounded Abort

� (P4) Bounded Exit

� (P5) First-Come-First-Served (FCFS)

� (P6) Local-spin

� (P7) Adaptivity

16
procedure Entry(p)
1. Wait[p] = true
2. inc(C, 1)
3. t = read(C)
4. insert(Q, [p, t])
5. promote()
6. promote()
7. wait till Wait[p] = false

procedure Abort(p)
11. delete(Q, [p, t])
12. promote()
13. if CSowner = p then
14. CSowner = ⊥
15. promote()

procedure Exit(p)
8. delete(Q, [p, t])
9. CSowner = ⊥
10. promote()

procedure promote()
16. if LL(CSowner) ≠ ⊥ then return
17. [q,t'] = findmin(Q)
18. if q ≠ ⊥ then LL(Wait[q])
19. if SC(CSowner, q) then
20. if q ≠ ⊥ then SC(Wait[q],false)

Note: Code shown here is for process p.

Very Basic and Informal
Proofs

� (P1) Mutual Exclusion

� (P2) Lockout-freedom (Scenario 4)

17

Deadlock-freedom +
Starvation-freedom

� (P3) Bounded Abort

� (P4) Bounded Exit

� (P5) First-Come-First-Served (FCFS)

� (P6) Local-spin

� (P7) Adaptivity
The time complexity depends only on point contention k and not
on the number of processes n for which the algorithm is designed.
In practice, k << n.

Conclusion and open
problems

�Conclusion: The first local-spin abortable mutual
exclusion algorithm with bounded complexities.

�P1: The algorithm uses token numbers that grow
without bound.

�P2: Either design an abortable algorithm of O(1)
remote reference complexity or prove its
impossibility.

This algorithm has O(min(k, log n)) remote reference complexity.

18

19Influences – 29 Citations

� Adaptive randomized mutual exclusion in sub-
logarithmic expected time by Danny Hendler & Philipp

Woelfel in 2010

“We present a randomized adaptive mutual exclusion algorithms
with O(log k/loglog k) expected amortized RMR complexity…This
establishes that sub-logarithmic adaptive mutual exclusion, using
reads and writes only, is possible.”

� Group mutual exclusion in O(log n) RMR by Vibhor Bhatt

& Chien-Chung Huang in 2010

“We show that in the CC model, using registers and LL/SC variables,
our algorithm achieves O(min(log n,k)) RMR, which is so far the
best. Moreover, given a recent result of Attiya, Hendler and
Woelfel showing that exclusion problems have a Ω(log n) RME
lower bound using registers, comparison primitives and LL/SC
variables.”

Discussion

20

