
1

EiffelStudio – the Eiffel IDE

Christian Estler

ETH Zurich

christian.estler@inf.ethz.ch

Distributed and Outsourced Software

Engineering - ETH course, Fall 2012

2

EiffelStudio – an Overview

• EiffelStudio (ES) is an Integrated

Development Environment to write

Eiffel programs

• Developed by Eiffel Software

• First version ca. 1990

• Current version is 7.1

• Available on SourceForge

• We use ES in the course

• Many things are similar to IDEs like

Eclipse or VisualStudio; some things

are different or tricky that’s what we’ll

talk about here

3

EiffelStudio – an Overview

We will talk about

• Clean compile (what is it, why is it needed?)

• Code Browsing

• Code Views

• EiffelStudio’s navigation using Pick & Drop

• Debugging in EiffelStudio

• Auto-completion and Code-Templates

• Refactoring tools

4

Clean Compile

• Clean compile means compiling the

project from scratch

• Necessary e.g. after adding or

removing libraries

• Deletes previously generated

intermediate compile information

(the EIFGENs folder)

• Rule of thumb: if your program

shows strange behavior, do a clean

compile

more: http://docs.eiffel.com/book/eiffelstudio/clean-compile

If you remember only one

thing from this talk, it should be

clean compile

http://docs.eiffel.com/book/eiffelstudio/clean-compile
http://docs.eiffel.com/book/eiffelstudio/clean-compile
http://docs.eiffel.com/book/eiffelstudio/clean-compile
http://docs.eiffel.com/book/eiffelstudio/clean-compile

5

Code Browsing

• ES has many features for browsing code; you’ll often use the following:

• Group & Feature View

• Class tool to determine

• Ancestors

• Descendants

• Clients

• Feature tool to determine

• Flat view

• Callers

• Callees

• …

• Navigation through Pick & Drop
(ES way of doing Drag & Drop)

6

Code Browsing – the Basics

• Group View • Feature View

Tip 1: arrange Views such that both are visible all the time. You’ll use them a lot.

Tip 2: Pick & Drop also works with these Views. Alternative to double-click.

7

Code Browsing – the Class Tool

• Eiffel makes have use of (multiple) inheritance

• Class tool provides all information on the class level

8

Code Browsing – the Feature Tool

• Feature tool provides all information of a feature

Tip: Pick & Drop also works within the Class and Feature tools (e.g. pick something

inside the Feature tool and drop it right there)

9

Code Browsing – the Diagram Tool

• Diagram tool can

be used to a

high-level

overview of the

entire system

(more than Class

and Feature tool)

• Pick & Drop a

cluster on the

diagram target

icon

Target Icon

10

Code Browsing – Different Code Views

• You can inspect code

in different views

more: http://docs.eiffel.com/book/eiffelstudio/class-views

Editable views

Basic text view Default editor view, used for writing code

Non-editable views

Clickable view
Reformatted representation of the code; more clickable

elements (e.g. comments) than in basic text view

Flat view
Shows the flattened version of a class (e.g. all inherited

features); this is the view used by the debugger

Contract View Public interface of the class, incl. contracts

Interface view
Same as contract view but for the flat-version of the

class.

http://docs.eiffel.com/book/eiffelstudio/class-views
http://docs.eiffel.com/book/eiffelstudio/class-views
http://docs.eiffel.com/book/eiffelstudio/class-views
http://docs.eiffel.com/book/eiffelstudio/class-views
http://docs.eiffel.com/book/eiffelstudio/class-views

11

Code Browsing – the Adressbar

• Adressbar can be used to quickly open classes or features

• If you only remember part of a class or feature name,

use “ * ” in the search, e.g.

• Search class: TTT_* all classes starting with TTT

• Search feature: * all features of the current class

12

Tip for Pick & Drop

• Many ES tools work with Pick & Drop

• Tip: try to drop elements on various kinds of icons in ES

• Pick & Drop feels “slow” if you go through the right-click

context menu

• Make right-click the

default for Pick & Drop:

Tools ->

Preferences ->

General.Pick and drop

13

Tip for Pick & Drop

• Option 1:

• Shift + right-click: Pick

• Ctrl + right-click: Open element in a new tab in editor

• Option 2:

• Make right-click the

default for Pick & Drop:

Tools ->

Preferences ->

General.Pick and drop

14

Compiler

• Compiling a system (F7)

• Melting: Generates bytecode, not C code.

Quick to generate but slowest execution.

Use during development.

• Freezing: Generates C code for the whole

system. Compilation takes longer but system

executes faster. Can still be debugged. Use

during development.

• Finalizing: Creates an executable production

version. Finalization performs extensive time

and space optimizations. Cannot be

debugged.

15

Running a System

• Run a system by clicking “run” (F5)

• Switches to “execution mode”

• Shows more debugging related tools

• Shows controls for system execution (stop, pause, etc.)

Run stepwise

16

Debugger

• Debugging works for melted and frozen systems
(not for finalized ones)

• Breakpoints can only be added using a flat view

• One way: switch editor view to flat view

• Quicker: Pick & Drop feature into Feature tool

17

Debugger

• To start the debugger simply hit “Run”
(no distinction like in Eclipse)

• Usual debugger tools are available during debugging

• Call Stack

• Expressions

• Switching between threads

• Usual debugger controls are available

• One step at a time (F10)

• Step into a routine value (F11)

• Step out of a routine (Shift + F11)

18

Debugger

• Often useful: conditional breakpoints

• Execution will only be stop under certain condition

19

Tip for debugging a client/server system

• Goal: run server and client on same

machine

• Rather than using command line, you

can do:

• Run the server

• Detach the server instance

• ES returns to “edit mode”

• Run the client

20

Auto-completion

• ES has auto-completion

• Auto-completion knows (only) about compiled code

• If it does not work (as you would expect), try the following

• Try to compile the system

• Close and reopen the file in the editor

• Do a clean compile

21

Auto-completion

• “ * ” can also be used in auto-completion

• Example:

• Find all calls containing “set”

• Use my_target_name.*set

22

Auto-completion – Word vs. Class

We have two types of completion

1. Word-completion (Ctrl + Space)

2. Class name completion (Ctrl + Shift + Space)

23

Code Templates

ES comes with a number of code templates

• write a keyword

• hit enter

• subsequent keywords are filled in automatically

Examples

• do .. end

• from ... until … loop … end

• across … as … loop … end

Special case across loop + hitting space rather than enter

• across … as … all … end

24

Refactoring Tools

• EiffelStudio only supports two refactorings:

• Renaming

• Pull Up routine

• Works only on compiling system

• re

rename

class

rename

feature

25

Other useful stuff

• Take a look at menu

• Edit

• Edit Advanced

• Make use of

• Line numbers

• Pretty print

• Commenting

• …

• Learn some of

keyboard shortcuts

26

Things we ignore for the moment

• Project settings

• Shared with all other teams

• Thus you should not modify them

• Profiler:

http://docs.eiffel.com/book/eiffelstudio/profiling

• Record Replay:

http://docs.eiffel.com/book/eiffelstudio/execution-record-

and-replay

http://docs.eiffel.com/book/eiffelstudio/profiling
http://docs.eiffel.com/book/eiffelstudio/profiling
http://docs.eiffel.com/book/eiffelstudio/execution-record-and-replay
http://docs.eiffel.com/book/eiffelstudio/execution-record-and-replay
http://docs.eiffel.com/book/eiffelstudio/execution-record-and-replay
http://docs.eiffel.com/book/eiffelstudio/execution-record-and-replay
http://docs.eiffel.com/book/eiffelstudio/execution-record-and-replay
http://docs.eiffel.com/book/eiffelstudio/execution-record-and-replay
http://docs.eiffel.com/book/eiffelstudio/execution-record-and-replay

27

Further Resources

• Official EiffelSoftware websites:

• http://www.eiffel.com/

• http://dev.eiffel.com/

• http://docs.eiffel.com/

• Have a look in the DOSE wiki

• Make use of the Eiffel Mailing list:

• http://tech.groups.yahoo.com/group/eiffel_software/

• Search the archive for answers

• Feel free to post any kind of (Eiffel-related) question

http://www.eiffel.com/
http://www.eiffel.com/
http://www.eiffel.com/
http://docs.eiffel.com/
http://docs.eiffel.com/
http://tech.groups.yahoo.com/group/eiffel_software/
http://tech.groups.yahoo.com/group/eiffel_software/

28

THE END

