
Chair of Software Engineering

Material copyright
Bertrand Meyer, 2012

Chair of Software Engineering

Bertrand Meyer

Topics

Part 1: Overview

Part 2: The “enemy”: Big Upfront Everything

Part 3: What is “agile”?

 3.1 Agile principles

 3.2 Agile roles

 3.3Agile tools and artifacts

 3.4 Agile practices

 3.5 Agile methods

Part 4: Critical analysis

 4.1 Conceptual

 4.2 Empirical

Part 5: Conclusion

Complementary material: Bibliography

Principles

“Separate news from editorial”:

 Parts 1 to 3 are focused
on the description

 Parts 4 and 5 are the
analysis and critique

But, throughout, the symbol

indicates skepticism or obvious
objections that need to be
addressed

Part 1: Overview

Part 2: The “enemy’: Big Upfront
 Everything

Part 3: What is “agile”?

 3.1 Agile principles

 3.2 Agile roles

 3.3Agile tools & artifacts

 3.4 Agile practices

 3.5 Agile methods

Part 4: Critical analysis

 4.1 Conceptual

 4.2 Empirical

Part 5: Conclusion

Complementary material: Bibliography

Reminder: software engineering has laws

Example: Boehm, McConnell, Putnam, Capers Jones...

Nominal cost & time

Time

Cost

25%

Assertions

Revolutionary

Better

Everyone else is doing it wrong

All or nothing

Not everyone is ecstatic…

.

Source: Stephens 03

.

- 1 -

Overview

Agile manifesto

.

Agile manifesto

.

Twelve principles

We follow these principles:

 Our highest priority is to satisfy the customer through early and continuous delivery
of valuable software.

 Welcome changing requirements, even late in development. Agile processes harness
change for the customer's competitive advantage.

 Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

 Business people and developers must work together daily throughout the project.

 Build projects around motivated individuals. Give them the environment and support
they need, and trust them to get the job done.

 The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

 Working software is the primary measure of progress.

 Agile processes promote sustainable development. The sponsors, developers, and users
should be able to maintain a constant pace indefinitely.

 Continuous attention to technical excellence and good design enhances agility.

 Simplicity—the art of maximizing the amount of work not done—is essential.

 The best architectures, requirements, and designs emerge from self-organizing teams.

 At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.

Source: Agile manifesto

Twelve principles

We follow these principles:
1. Our highest priority is to satisfy the customer through

early and continuous delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity— the art of maximizing the amount of work not done —is essential.

11. The best architectures, requirements, and designs emerge from self-
organizing teams.

12. At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.

Source: Agile manifesto

Practice

Assertion

Practice

Assertion

Assertion

Wrong

Redundancy

Redundancy

What about
testing?

My view: agile assumptions

 A New, reduced role for manager

 B No “Big Upfront” steps

 C Iterative development

 D Limited, negotiated scope

 E Focus on quality, achieved through testing

My view: agile principles

Organizational

 1 Place the customer at the center

 2 Develop minimal software:

 2.1 Produce minimal functionality

 2.2 Produce only the product requested

 2.3 Develop only code and tests

 3 Accept change

 4 Let the team self-organize

 5 Maintain a sustainable pace

Technical

 6 Produce frequent working iterations

 7 Treat tests as a key resource:

 7.1 Do not start any new development until all tests pass

 7.2 Test first

 8 Express requirements through scenarios

The need for change

Are bouts of esprit de l’escalier too late in software also? Bad
managers suppress them, telling the implementers, in effect, to code
and shut up. Good managers try to see whether they can take
advantage of belated specification ideas, without attracting the
attention of whoever is in charge of enforcing waterfall-style ukases
against changing the specification at implementation time.

With O-O development it becomes clear that esprit de l’escalier is not
just the result of laziness in analysis, but follows from the intrinsic
nature of software development. It is not just that we sometimes
understand aspects of the problem only at the time of the solution,
but more profoundly that the solution affects the problem and
suggests better functionalities.

Remember the example of command undoing and redoing: an
implementation technique, the “history list” actually suggested a new
way of providing end-users of our system with a convenient interface
for undoing and redoing commands.

Source: Meyer 1997

The “lean” view

Seven wastes of software development:

Extra/Unused features (Overproduction)

Partially developed work not released to production
(Inventory)

Intermediate/unused artifacts (Extra Processing)

Seeking Information (Motion)

Escaped defects not caught by tests/reviews (Defects)

Waiting (including Customer Waiting)

Handoffs (Transportation)

Source: Poppendieck

Not everyone is ecstatic…

.

Source: Stephens 03

.

- 2 -

The “enemy”:
Big Upfront
Everything

ig
Upfront

Anything

The revolt of the cubicles

.

A slogan

All you need is code

Code is all you need

 The bOOtles

Source: Meyer 1997

Heavyweight methods

(Sometimes called formal or heavyweight)

Examples:
 Waterfall model (from 1970 on)

 Military standards

 CMM, then CMMI

 Unified Modeling Language (UML)

 ISO 9000 series of standards

 Rational Unified Process (RUP)

 Personal and Team Software Process (PSP/TSP)

 Cluster model

Overall idea: to enforce a strong engineering discipline on
the software development process

 Controllability, manageability

 Traceability

 Reproducibility

The world of standards

http://www.software.org/quagmire/

http://www.software.org/quagmire/

Lifecycle models

Origin: Royce, 1970, Waterfall model

Scope: describe the set of processes involved in the
production of software systems, and their sequencing

“Model” in two meanings of the term:

 Idealized description of reality

 Ideal to be followed

The original waterfall article

Proceedings of IEEE WESCON, pages 1-9, 1970

Source: Royce 1970

Waterfall (continued)

.

Source: Royce 1970

Waterfall (continued)

.

Source: Royce 1970

Waterfall (continued)

.

Source: Royce 1970

The waterfall model of the lifecycle

Feasibility
study

Requirements

Specification

Global
design

Detailed
design

Implemen-
tation

Distribution

V & V

Arguments for the waterfall

(After B.W. Boehm: Software engineering economics)

 The activities are necessary
 (But: merging of middle activities)

 The order is the right one.

Source: Boehm 81

The waterfall model

Feasibility
study

Requirements

Specification

Global
design

Detailed
design

Implemen-
tation

Distribution

V & V

Problems with the waterfall

 Late appearance of actual code

 Lack of support for requirements change — and more
generally for extendibility and reusability

 Lack of support for the maintenance activity (70% of
software costs?)

 Division of labor hampering Total Quality Management

 Impedance mismatches

 Highly synchronous model

Impedance mismatches

As Management requested it. As the Project Leader defined it. As Systems designed it.

As Programming developed it. As Operations installed it. What the user wanted.

(Pre-1970 cartoon; origin unknown)

A modern variant

The spiral model

Iteration 1

Iteration 2

Iteration 3

The spiral model

Apply a waterfall-like approach to successive prototypes

CMMI background

Initially: Capability Maturity Model (CMM), developed by
Software Engineering Institute (at Carnegie-Mellon
University, Pittsburgh) for the US Department of
Defense, 1987-1997; meant for software

Widely adopted by Indian outsourcing companies

Generalized into CMMI (version 1.1 in 2002)

SEI itself offers assessments: SCAMPI (Standard CMMI
Appraisal Method for Process Improvement)

Source for some of the CMMI material:
Peter Kolb (from our ETH “Distributed and
Outsourced Software Engineering” course)

CMMI maturity levels

Process unpredictable,
poorly controlled and

reactive

Process characterized for
projects and is often

reactive

Process characterized
for the organization

and is proactive

Process measured
and controlled

Focus on process
improvement

Optimizing

Quantitatively
Managed

Defined

Performed

Managed

Optimizing

Defined

1

2

3

4

5

CMMI basic ideas

Basic goal: determine the maturity level of the process of
an organization

Focused on process, not technology

Emphasizes reproducibility of results

(Moving away from “heroic” successes to controlled
processes)

Emphasizes measurement, based on statistical quality
control techniques pioneered by W. Edward Deming & others

Relies on assessment by external team

Predictability

.

0 %

140%

-140%

..
. .

.

..

.
.

.
.

.
.

. .

. . . .

.
. . .

. .

.

.

.
.

. .
. ..

.

.
.

.
.

Without Historical Data With Historical Data

Variance: + 20% to -145% Variance:- 20% to + 20%

(Mostly Level 1 & 2) (Level 3)

O
ve

r/
U
nd

e
r

Pe
rc

e
nt

a
ge

.

.
. . .

.

.
. .

..
.

. .

.
.

.
.

. .

.
.

. . .
.

..
.

.
.

.
.

.

. . .
.

.
. . . .

.
.

.

John Vu: Software Process Improvement Journey: From Level 1 to Level 5, 7th
SEPG Conference, 1997, see www.processgroup.com/john-vu-keynote2001.pdf

For 120 projects in Boeing
Information Systems

Source: Peter Kolb

http://www.processgroup.com/john-vu-keynote2001.pdf
http://www.processgroup.com/john-vu-keynote2001.pdf
http://www.processgroup.com/john-vu-keynote2001.pdf
http://www.processgroup.com/john-vu-keynote2001.pdf
http://www.processgroup.com/john-vu-keynote2001.pdf

Generic goals and practices

GP 1.1 Perform Base Practices

GP 2.1 Establish an Organizational Policy

GP 2.2 Plan the Process

GP 2.3 Provide Resources

GP 2.4 Assign Responsibility

GP 2.5 Train People

GP 2.6 Manage Configurations

GP 2.7 Identify and Involve Relevant Stakeholders

GP 2.8 Monitor and Control the Process

GP 2.9 Objectively Evaluate Adherence

GP 2.10 Review Status with Higher Level Mgmt

GP 3.1 Establish a Defined Process

GP 3.2 Collect Improvement Information

Achieve Specific Goals

Institutionalize a Managed
Process

Institutionalize a Defined
Process

Institutionalize a
Quantitatively Managed
Process

Capability

Level Generic Goals Generic Practices

1

2

3

4

CMMI: summary

Defines goals and practices shown to be useful to the
software industry

Primarily directed to large organizations

Focus on process: explicit, documented, reproducible,
measurable, self-improving

Essential to outsourcing industry

Technology-neutral

TSP, PSP

PSP: Personal Software Process

TSP: Team Software Process

Transposition of CMMI-like ideas to work of individual
teams and developers

Management support

The initial TSP objective is to convince management to let
the team be self-directed, meaning that it:

 Sets its own goals

 Establishes its own roles

 Decides on its development strategy

 Defines its processes

 Develops its plans

 Measures, manages, and controls its work

Management support

Management will support you as long as you:

 Strive to meet their needs

 Provide regular reports on your work

 Convince them that your plans are sound

 Do quality work

 Respond to changing needs

 Come to them for help when you have problems

Source for PSP material: Software Engineering Institute

Management support

Management will agree to your managing your own work as
long as they believe that you are doing a superior job.

To convince them of this, you must:

 Maintain and publish precise, accurate plans

 Measure and track your work

 Regularly show that you are doing superior work

The PSP helps you do this

PSP essential practices

 Measure, track, and analyze your work

 Learn from your performance variations

 Incorporate lessons learned into your personal practices

What does a PSP provide?

A stable, mature PSP allows you to

 Estimate and plan your work

 Meet your commitments

 Resist unreasonable commitment pressures

You will also

 Understand your current performance

 Improve your expertise as a professional

The PSP process flow

Requirements

Finished product

Project
summary

Project and process
data summary report

Planning

Design

Code

Compile

Test

PM

Scripts guide
Logs

Requirements

Finished product

Project
summary

Project and process
data summary report

Planning

Design

Code

Compile

Test

Postmortem

Scripts guide
Logs Logs

Arguments for reviews over tests

In testing, you must
 Detect unusual behavior
 Figure out what the test program was doing
 Find where the problem is in the program
 Figure out which defect could cause such behavior

This can take a lot of time

With reviews you

 Follow your own logic
 Know where you are when you find a defect
 Know what the program should do, but did not
 Know why this is a defect
 Are in a better position to devise a correct fix

What does a PSP provide?

A stable, mature PSP allows you to

 Estimate and plan your work

 Meet your commitments

 Resist unreasonable commitment pressures

You will also

 Understand your current performance

 Improve your expertise as a professional

Code reviews

General principles (not specifically from PSP):

 Uncoupled from evaluation process

 Meeting must have chair, secretary

 Chair is not supervisor

 Purpose is to identify faults

 Purpose is not to correct them

 Purpose is not to evaluate developer; keep focus technical

 Strict time limit (e.g. 2 hours)

 Announced sufficiently long in advance

 Participant number: 5 to 10

 Code available in advance, as well as any other documents

 Meeting must be conducted professionally and speedily;
chair keeps it focused

Code review checklist

Reviews are most effective with personal checklist
customized to your own defect experience:

 Use your own data to select the checklist items

 Gather and analyze data on the reviews

 Adjust the checklist with experience

Do the reviews on a printed listing, not on screen

The checklist defines steps and suggests their order:

 Review for one checklist item at a time

 Check off each item as you complete it

Design review principles

In addition to reviewing code, you should also review your
designs

Requires that you

 Produce designs that can be reviewed

 Follow an explicit review strategy

 Review design in stages

 Verify that logic correctly implements requirements

Digression: better code reviews

With the Web code reviews become much more
interesting:

 Classes circulated three weeks in advance
 Comment categories: choice of abstractions, other

aspects of API design,architecture choices,
algorithms & data structures, implementation,
programming style, comments & documentation

 Not just code, but design as well
 Comments in writing on Google Doc page, starting one

week ahead
 Author of code responds on same page
 Meeting is devoted to unresolved issues

Source: Meyer 08

Distributed code review

.

https://docs.google.com/a/eiffel.com/Doc?docid=0Afq1RyexGjpQZGYycW4zcTJfNjhmbTlybnZobQ&hl=en_US

Review categories (end of digression)

1. Choice of abstractions

2. Other aspects of API design

3. Contracts

4. Other aspects of architecture, e.g. choice of client
links, inheritance hierarchies

5. Implementation, in particular choice of data structures
and algorithms

6. Programming style

7. Comments and documentation (including indexing/note
clauses)
8. Global comments

9. Actions based on this code review

PSP: an assessment

Ignore technology assumptions (strict design-code-compile-
test cycle) which is not in line with today’s best practices.
Retain emphasis on professional engineer’s approach:

 Plan
 Record what you do both qualitatively and
quantitatively:

 Program size
 Time spent on parts and activities
 Defects

Think about your personal process
 Improve your personal process

Tool support, integrated in IDE, is essential

Topics

Part 1: Overview

Part 2: The “enemy”: Big Upfront Everything

Part 3: What is “agile”?

 3.1 Agile principles

 3.2 Agile roles

 3.3Agile tools and artifacts

 3.4 Agile practices

 3.5 Agile methods

Part 4: Critical analysis

 4.1 Conceptual

 4.2 Empirical

Part 5: Conclusion

Complementary material: Bibliography

.

3

What is agile?

.

- 3.1 -

Agile principles

3 What is agile?

Agile manifesto

.

Twelve principles

We follow these principles:

 Our highest priority is to satisfy the customer through early and continuous delivery
of valuable software.

 Welcome changing requirements, even late in development. Agile processes harness
change for the customer's competitive advantage.

 Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

 Business people and developers must work together daily throughout the project.

 Build projects around motivated individuals. Give them the environment and support
they need, and trust them to get the job done.

 The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

 Working software is the primary measure of progress.

 Agile processes promote sustainable development. The sponsors, developers, and users
should be able to maintain a constant pace indefinitely.

 Continuous attention to technical excellence and good design enhances agility.

 Simplicity—the art of maximizing the amount of work not done—is essential.

 The best architectures, requirements, and designs emerge from self-organizing teams.

 At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.

Source: Agile manifesto

My view: agile assumptions

 A New, reduced role for manager

 B No “Big Upfront” steps

 C Iterative development

 D Limited, negotiated scope

 E Focus on quality, achieved through testing

My view: agile principles

Organizational

 1 Place the customer at the center

 2 Develop minimal software:

 2.1 Produce minimal functionality

 2.2 Produce only the product requested

 2.3 Develop only code and tests

 3 Accept change

 4 Let the team self-organize

 5 Maintain a sustainable pace

Technical

 6 Produce frequent working iterations

 7 Treat tests as a key resource:

 7.1 Do not start any new development until all tests pass

 7.2 Test first

 8 Express requirements through scenarios

Negotiated scope contract

“Write contracts for software development that fix time,
costs, and quality but call for an ongoing negotiation of the
precise scope of the system. Reduce risk by signing a
sequence of short contracts instead of one long one.”

You can move in the direction of negotiated scope. Big,
long contracts can be split in half or thirds, with the
optional part to be exercised only if both parties agree.
Contracts with high costs for change requests can be
written with less scope fixed up front and lower costs for
changes”

XP
Source: Beck 05

Favor verbal communication

There is a grand myth about requirements—if you write them down, users will
get exactly what they want. Not true. At best, users will get exactly what was
written down, which may or may not be anything like what they really want.

Written words are misleading—they look more precise than they are.
Recently, to run a course, I emailed my assistant "Please book the Denver
Hyatt". She emailed “The hotel is booked”. I mailed back "Thanks".

A week later she emailed "The hotel is booked the days you wanted. Should I
try another hotel? Another week? Another city?" We had miscommunicated
about "booked.“ When she wrote "the hotel is booked" she meant, "The Hyatt
room is already taken.“ I read “booked” as a confirmation that she had
booked the hotel. Neither of us did anything wrong. Rather, this is an example
of how easy it is to miscommunicate, especially in writing. Had we been talking,
I would have thanked her when she said "the hotel is booked.“ My happy voice
would have confused her, and we would have caught our miscommunication
right then.

Beyond this problem there are other reasons to favor discussions over
documents.

Scrum

Source: Cohn (slightly abridged)

Eliminate waste

Everything not adding value to the customer is considered waste:

 Unnecessary code

 Unnecessary functionality

 Delay in process

 Unclear requirements

 Insufficient testing

 Avoidable process repetition

 Bureaucracy

 Slow internal communication

 Partially done coding

 Waiting for other activities, team, processes

 Defects, lower quality

 Managerial overhead

Value stream mapping: strategy to recognize waste. Eliminate it
iteratively

Lean
Source: Poppendieck

Minimize artifacts (inventory)

Inventory is waste; advertised benefits not worth the costs:

 Consumes resources

 Slows down response time

 Hides quality problems

 Gets lost

 Degrades and becomes obsolete

In software: inventory is documentation that is not a part of the final
program, e.g.

 Requirements documents

 Design documents

Risk: building the wrong system if these documents do not capture true user
needs. Even if they do now, they will not necessarily remain valid in the future.

As inventory must be minimized to maximize manufacturing flow, requirements
& design documents must be minimized to maximize development flow

Best approach: raise level of abstraction of documentation. Instead of a 100
page detailed specification, write a 10 page set of rules and guidelines, and
document only the exceptions

Lean

Source: Poppendieck

Amplify learning

Software development is a continuous learning process

The best approach for improving a software development environment
is to amplify learning and speed up the learning process:

 To prevent accumulation of defects, run tests as soon as the
code is written

 Instead of adding documentation or planning, try different
ideas by writing and testing code and building

 Present screens to end-users and get their input

 Enforce short iteration cycles, each including refactoring and
integration testing

 Set up feedback sessions with customers

Set-based development: concentrate on communicating the
constraints of the future solution and not the possible solutions, to
promote dialog with the customer in devising the solution

Lean
Source: Poppendieck

Focus

Focus on individual task, to ensure progress:

 Control flow of progress

 Deal with interruptions:

 Two-hour period without interruption

 Assign developer to project for at least two days
before switching

Focus on direction of project

 Define goals clearly

 Prioritize goals

Crystal

Decide as late as possible

Delay decisions as much as possible until they can be made based on
facts, not assumptions, and customers better understand their needs

The more complex a system, the more capacity for change should be
built in

Use iterative approach to adapt to changes and correct mistakes,
which might be very costly if discovered after system release

Planning should be involved, but concentrates on the different options
and adapting to the current situation, as well as clarifying confusing
situations by establishing patterns for rapid action

Evaluating different options is effective, but only if they provide the
needed flexibility for late decision making

Lean
Source: Poppendieck

Deliver as fast as possible

It is not the biggest that survives, but the fastest

The sooner the end product is delivered, the sooner feedback can
be received, and incorporated into the next iteration

For software, the Just-in-Time production ideology means
presenting the needed result and letting the team organize itself to
obtain it in a specific iteration

At the beginning, the customer provides the needed input. This
could be simply presented in small cards or stories — the developers
estimate the time needed for the implementation of each card

The work organization changes into self-pulling system — each
morning during a stand-up meeting, each member of the team
reviews what has been done yesterday, what is to be done today and
tomorrow, and prompts for any inputs needed from colleagues or
the customer

Lean

Source: Poppendieck

Scrum

Minimize dependencies

Scrum asserts that it is possible to remove dependencies
between user stories, so that at any point any user story
can be selected according to the proper criteria
(maximizing business value)

Scrum
Source: Sutherland

Multiple design

Another key idea fromToyota is set-based design. If a new
brake system is needed, three teams may design solutions
to the problem

If a solution is deemed unreasonable, it is cut

At period end, the surviving designs are compared and one
chosen, perhaps with modifications based on learning from
the others — an example of deferring commitment until
the last possible moment

Software decisions could also benefit from this practice
to minimize the risk brought on by big up-front design

Source: Poppendieck
Lean

Build in integrity

The customer needs an overall experience of the System: how it is
advertised, delivered, deployed, used, how well it solves problems

 Conceptual integrity means that the system’s separate components
work well together as a whole

 To this end, the information flow should be constant from customer
to developers and back, avoiding large stressful amount of
information after long development in isolation

 One of the healthy ways towards integral architecture is refactoring

 The more features are added to the system, the more loose the
starting code base for further improvements. Refactoring is about
keeping simplicity, clarity, minimum amount of features in the code

 At the end the integrity should be verified with thorough testing,
thus ensuring the System does what the customer expects it to

 Automated tests are also part of the production process: if they do
not add value they are waste

Lean
Source: Poppendieck

XP

See the whole

Software systems are the product of their interactions

Defects accumulate during the development process

The root causes of defects should be found and eliminated

The larger the system and the more organizations
involved, the greater the importance of well defined
relationships between vendors, to ensure smooth
component interactions

A strong sub- contractor network with win-win
relationships is more beneficial than short-term profit
optimizing

“Think big, act small, fail fast; learn rapidly”

Lean
Source: Poppendieck

Sustainable pace

People perform best if they are not overstressed

Developers should not work more than 40 hour weeks,

If there is overtime or week-end work one week, there should
not be any in the next week

XP avoids “crunch time” of traditional projects thanks to short
release cycles

To help achieve these goals:

 Frequent code-merge

 Always maintain executable, test-covered, high-quality
code

 Constant refactoring, helping keep fresh and alert minds

 Collaborative style

 Constant testing

XP Scrum Crystal

Energized work

See “sustainable pace”

XP

No overtime

See “sustainable pace”

Yourdon, “Death March” (1999)

XP

Personal safety

Encourage free expression of ideas

Do not ridicule anyone because of a question or suggestion

Build trust within the team

Crystal

Humanity

Recognize that software is developed by people

Offer developers what they expect:

 Safety

 Accomplishment

 Belonging

 Growth

 Intimacy

Agile approaches are indebted here to DeMarco’s and
Lister’s Peopleware (see bibliography)

XP
Source: Beck 05

Reflective improvement

Developers must take breaks from regular development to
look for ways to improve the process

Iterations help with this by providing feedback on
whether or not the current process is working

Crystal

Empower the team

Traditional view: managers tell workers to do their job

Agile view: managers listen to developers, explain possible actions,
provide suggestions for improvements.

“Find good people & let them do their own job“. The leader is there to:

 Encouraging progress

 Help catch errors

 Remove impediments

 Provide support and help in difficult situations

 Make sure that skepticism does not ruin the team’s spirit

 Avoid in micro-management

In software development people are not resources. They need
motivation and a higher purpose.

Team chooses own commitments

Team has access to customers

Lean XP Scrum

Source: Poppendieck

Sit together

XP promotes an open workspace:

 Organized around pairing stations

 With whiteboard space

 Locating people according to conversations they
should overhear

 With room for personal effects

 With a place for private conversations

Expected benefits: improve communication, resolve
problems quickly with the benefits of face-to-face
interaction (as opposed to e.g. email)

XP

Informative workspace

Facilitate communication through well-organized
workspace:

 Story board with user story cards movable from not
started to in progress to done column

 Release charts

 Iteration burndown charts

 Automated indicators showing the status of the
latest unit-testing run

 Meeting room with visible charts, whiteboards and
flipcharts

XP Scrum

Team continuity

Keep the team together and stable

Do not reassign people to other teams or treat them as
mere resources

XP

Shrinking teams

As a team grows in capability, keep its workload constant
but gradually reduce its size

This frees people to form more teams

When the team has too few members, merge it with
another too-small team

XP
Source: Beck 05

Customer always available

“One of the few absolute requirements of Extreme Programming”

All project phases require communication with customer, preferably face to face.
Recommended technique: assign one or more customers to the development team.

Projects of significant size require full-time commitment from customers, who:

 Write user stories, with developer help, to allow time estimates & assign priority

 Help make sure most of the desired functionality is covered by stories

 Provide further functional details as user stories are incomplete

 During planning meeting, negotiate selection of user stories for each release

 Negotiates release timing (use release planning meeting for this purpose)

 Make all decisions that affect their business goals

 Try system early to provide feedback

 Help with functional testing: review test score

 Allow the system to continue into production or stop it

 Because details are left off the user stories the developers will need to talk
with customers to get enough detail to complete a programming task.

“This may seem like a lot of the customer's time but the customer's time is saved
initially by not requiring a detailed requirements specification and later by not
delivering an uncooperative system”
Resolve conflicts between customers by having them participate in group meetings

XP
Source: Wells

Customer involvement

On-site customer:

 Makes sure team understands customer wishes

 Talks to developer, clarifying feature wishes

 Specifies functional tests for user stories

 Participates in planning of iterations and releases

 Maintains contact with management

XP

Leave optimization till last

According to XP you should always wait until you have
finished a story and run your tests before you try to
optimize your work

Only then can you analyze what exactly it is that needs
optimizing

Do not make work for yourself by trying to anticipate
problems before they exist; instead, wait until you have
the results of your analysis before you focus on resolving
whatever issues arise

XP
Source: Wallace 02

All code must have unit tests

Core idea of XP:

 Do not write code without associated unit tests

 Do not proceed (with release, with next iteration)
unless all unit tests pass

XP

All code must pass unit tests before release

Code that does not pass tests is waste

XP

Code the unit test first

“Here is a really good way to develop new functionality:

 1. Find out what you have to do.

 2. Write a UnitTest for the desired new capability. Pick the
smallest increment of new capability you can think of.

 3. Run the UnitTest. If it succeeds, you're done; go to step 1, or
if you are completely finished, go home.

 4. Fix the immediate problem: maybe it's the fact that you
didn't write the new method yet. Maybe the method doesn't
quite work. Fix whatever it is. Go to step 3.

A key aspect of this process: don't try to implement two things at a
time, don't try to fix two things at a time. Just do one.

When you get this right, development turns into a very pleasant cycle
of testing, seeing a simple thing to fix, fixing it, testing, getting
positive feedback all the way.

Guaranteed flow. And you go so fast!

Try it, you'll like it.”

XP
Source: Ron Jeffries

When bug found, create test before fixing it

.

XP

“A bug is not an error
in logic,

it is a test you forgot
to write”

Root-cause analysis

Every time a
defect is found,
do not just fix it
but analyze its
cause and make
sure to correct
that cause, not
just the symptom

XP Scrum

Tom van Vleck, Software Engineering
Notes, July 1989, adapted in Meyer 2009

Run acceptance tests often and publish results

Acceptance tests are black box system tests. Each
acceptance test represents some expected result from
the system

Acceptance tests should be automated so they can be run
often

The acceptance test score is published to the team

It is the team's responsibility to schedule time each
iteration to fix any failed tests

XP

Source: Wells

Only one pair integrates code at a time

Collective code ownership

Development proceeds in parallel

But: to avoid conflicts, only one pair is permitted to
integrate its changes at any given time

XP

System metaphor

“A metaphor is meant to be agreed upon by all members of a project
as a means of simply explaining the purpose of the project and thus
guide the structure of the architecture”

Benefits:

 Communication, including between customers & developers

 Clarify project, explain functionality

 Favors simple design

 Helps find common vocabulary

For a financial software tool:

 Bad: “check writer”

 Better: “financial advisor”

XP
Source: Tomayko 03

Example metaphors

.

XP
Source: Tomayko 03

Incremental design

Developers work in small steps, validating each before moving to the
next. Three parts:

 Start by creating the simplest design that could possibly work

 Incrementally add to it as the needs of the software evolve

 Continuously improve design by reflecting on its strengths and
weaknesses

“When you first create a design element, be completely specific.
Create a simple design that solves only the problem you face, no
matter how easy it may seem to solve more general problems.

This is hard! Experienced programmers think in abstractions.
The ability to think in abstractions is often a sign of a good
programmer. Coding for one specific scenario will seem strange, even
unprofessional. Waiting to create abstractions will enable you to
create designs that are simple and powerful. Do it anyway.”

XP
Source: Shore 08

Incremental deployment

Deploy functionality gradually

“Big Bang” deployment is risky

XP Scrum

Quarterly cycle

A recommendation to have regular reviews of high level
system structure, goals and priorities on a quarterly basis,
matching the financial reporting practices of many
companies

Also an opportunity to reflect on the team practices and
state of mind, and discuss any major changes in practices
and tools

Period chosen as large enough not to interfere with
current concerns, and short enough to allow frequent
questioning of practices and updates of long-term goals

XP

Weekly cycle

Plan work a week at a time. Have a meeting at the beginning of every
week. During this meeting:

 1. Review progress to date, including how actual progress for the
previous week matched expected progress

 2. Have the customers pick a week's worth of stories to
implement this week.

 3. Break the stories into tasks. Team members sign up for tasks
and estimate them.

Start week by writing automated tests that will run when the stories
are completed. Spend the rest completing the stories and getting the
tests to pass. The goal is to have deployable software at the end of
the week which everyone can celebrate as progress.

The nice thing about a week is that everyone —programmers, testers,
and customers together — is focused on having the tests run on
Friday. If you get to Wednesday and it is clear that all the tests
won't be running, you still have time to choose the most valuable
stories and complete them.

XP
Source: Beck

Daily deployment

Goes back to Microsoft’s Daily Build

“China Shop rules”: you break it, you fix it

Difficult to reconcile with other XP principles

XP

Continuous integration

Rather than weekly or daily builds, build system several
times per day

Benefits:

 Integration is easier because little has changed

 Team learns more quickly

 Unexpected interactions rooted out early: conflicts
are found while team can still change approach

 Problematic code more likely to be fixed because
more eyes see it sooner

 Duplication easier to eliminate because visible sooner

XP
Source: Wake

Ten-minute build

Make sure that the build can be completed, through an automatic
script, in ten minutes or less, to allow frequent integration. Includes:

 Compile source code

 Run tests

 Configure registry settings

 Initialize database schemas

 Set up web servers

 Launch processes

 Build installers

 Deploy

Make sure the build provides a clear indication of success or failure

If it has to take more than ten minutes, split the project into
subprojects, and replace end-to-end funcational tests by unit tests

XP
Source: Shore 08

Slack

"In any plan, include some minor tasks that can be dropped
if you get behind."

Goals:

 Establishing trust in the team's ability to deliver

 Reduce waste

XP
Source: Beck, deMarco

Single code base

Maintain a single code base: avoid branching, even if
permitted by configuration management system

XP

Technical environment

Access to automated tests, configuration management,
frequent integration, code repository

Crystal

Shared code

Agile methods reject code ownership in favor of code
whose responsibility is shared by entire team

Rationale:

 Most non-trivial features extend across many layers
in the application

 Code ownership creates unnecessary dependencies
between team members and delays

 What counts is implemented features, not personal
responsibility

 Avoid blame game

 Avoid specialization

 Minimize risk (team members leaving)

XP

Code and tests

Maintain only code and tests as permanent artifacts

XP

Pay-per-use

Charge for software by actual usage

Note: this was tried and failed in the 80s:
“Superdistribution” (Cox 1996)

XP
Source: Beck 05

More XP principles

Mutual benefit

Self-similarity

Improvement

Diversity

Reflection

Flow

Opportunity

Redundancy

Failure

Quality

Baby steps

Accepted responsibility

XP

.

- 3.2 -

Agile roles

3 What is agile?

Product owner

The product owner:

 Defines product features

 Decides on release date

 Decides on release content

 Responsible for product profitability (ROI)

 Prioritizes features according to market value

 Can change features and priority over 30 days

 Accepts or rejects work results

Source: Sutherland

Scrum

ScrumMaster

The ScrumMaster:

 Ensures that the team is functional and productive

 Enables cooperation across all roles & functions

 Removes impediments

 Shields team from external interferences

 Enforces process: invites to daily scrum, sprint
review, planning meetings

Source: Sutherland

Scrum

Team

The team:

 Is cross-functional

 is made of seven +/2 members

 Selects iteration goal

 Specifies work results

 Has right to do everything within boundaries of
project guidelines to reach iteration goal

 Organizes itself and its work

 Demos work results to Product Owner

Source: Sutherland

Scrum

Manager

The managers:

 Support team in its use of Scrum

 Contribute wisdom, expertise and assistance

 Do not “play nanny”:

 “Assign tasks, get status reports, and other forms
of micromanagement”

 Instead, by “play guru”:

 Mentor, coach, play devil’s advocate, help remove
impediments, help problem-solve,

 May need to evolve their management style, e.g. use
Socratic questioning to help team discover solution to
a problem, (rather than imposing a solution to team)

Source: Sutherland

Scrum

Customer

Customer responsibilities in XP:

 Trust developers’ technical decisions, because
developers understand technology

 Analyze risk correctly, weighing stories against each
other

 Provide precise stories, enabling developers to
produce comprehensive task cards and accurate
estimates

 Choose stories with maximum value, scheduling the
most valuable stories that could possibly fit in to
next iteration

 Work within team, providing guidance and receiving
feedback as quickly and accurately as possible

XP

Source: Chromatic 03

Expert user

Person with expert knowledge of the project area, who can
answer questions and suggest solutions to problems

Should be actual user and not just a tester from the
development team

Minimum of once a week, two-hour meeting with expert
user, and ability to make phone calls

Crystal

Developer

Main job: turn customer stories into working code.

Developer obligations:

 Know and understand technical issues

 Create and maintain the system as it evolves

 Answer: “How will we implement it?”, “How long will it take?” & “What are the risks?”

 Work with customer to understand his stories

 From a story, decide implementation

 Estimate work for each story, based on implementation decisions & experience

 Identify features that depend on other features

 Identify risky features and report them to customer

 Follow team guidelines

 Implement only what is necessary

 Communicate constantly with customers

Developer Rights:

 Estimate own work

 Work sensible & predictable schedule, by scheduling only work that can be done

 Produce code that meets the customer’s needs, by focusing on testing, refactoring, and
customer communication

 Avoid need to make business decisions, by allowing the customer to make them

XP

Source: Chromatic 03

Scrum

Tracker

Keeps track of the schedule

Most important metric

 Velocity: ratio of ideal time estimated for tasks to actual
time spent implementing them.

Other important data:

 Changes in velocity

 Amount of overtime worked

 Ratio of passing to failing tests

These numbers measure progress and the rate of progress and
help determine if the project is on schedule for the iteration

To measure velocity within the iteration, every day or two, the
tracker asks each developer how many tasks he has completed

XP

Source: Chromatic 03

Scrum

Coach

Optional role:

 Guides team

 Mentors team

 Leads by example

 Teaches when necessary

 May teach by doing

 May offer ideas to solve thorny problems

 May serve as intermediary with management

In Scrum: this role is mostly taken on by the ScrumMaster

XP

After: Chromatic 03

.

- 3.3 -

Agile artifacts

3 What is agile?

Use cases (scenarios)

One of the UML diagram types

A use case describes how to achieve a single business goal
or task through the interactions between external actors
and the system

A good use case must:

 Describe a business task

 Not be implementation-specific

 Provide appropriate level of detail

 Be short enough to implement by one developer in one
release

Use case example

Place an order:
Browse catalog & select items

Call sales representative

Supply shipping information

Supply payment information

Receive conformation number
from salesperson

May have precondition,
postcondition, invariant

A use case

Name
UC-8: Search and Replace

Summary
All occurrences of a search term are
replaced with replacement text.

Rationale

While editing a document, many users find
that there is text somewhere in the file
being edited that needs to be replaced, but
searching for it manually by looking through
the entire document is time-consuming and
ineffective. The search-and-replace
function allows the user to find it
automatically and replace it with specified
text. Sometimes this term is repeated in
many places and needs to be replaced. At
other times, only the first occurrence
should be replaced. The user may also wish
to simply find the location of that text
without replacing it.

Users All users
Preconditions A document is loaded and being edited.

Basic Course
of Events

1.The user indicates that the software is to
perform a search-and-replace in the
document.
2.The software responds by requesting the
search term and the replacement text.
3.The user inputs the search term and
replacement text and indicates that all
occurrences are to be replaced.
4.The software replaces all occurrences of
the search term with the replacement text.

Source: Steelman & Greene

Alternative
Paths

1.In Step 3, the user indicates
that only the first occurrence is
to be replaced. In this case, the
software finds the first
occurrence of the search term in
the document being edited and
replaces it with the replacement
text. The postcondition state is
identical, except only the first
occurrence is replaced, and the
replacement text is highlighted.
2.In Step 3, the user indicates
that the software is only to
search and not replace, and does
not specify replacement text. In
this case, the software highlights
the first occurrence of the
search term and the use case
ends.
3.The user may decide to abort
the search-and-replace operation
at any time during Steps 1, 2, or
3. In this case, the software
returns to the precondition state.

Postconditions
All occurrences of the search
term have been replaced with the
replacement text.

A use case

.

Source: Steelman & Greene

User story

“A user story is simply something a user wants”

“Stories are more than just text written on an index card
but for our purposes here, just think of user story as a bit
of text saying something like

 Paginate the monthly sales report

 Change tax calculations on invoices.

Many teams have learned the benefits of writing user
stories in the form of “As a … I … so that …”

XP Scrum
Source: Cohn

Standard form for user stories

“As a <user_or_role>

I want <business_functionality>

so that <business_justification>”

Example:

 “

Scrum

Example user story

“I would certainly argue it is
more easily digestible than a
lengthy specification,
especially for business
colleagues”

Source: Waters

Story card

From the original C3 project:

XP
Source: Jeffries

Task card

From the original C3 project:

XP
Source: Jeffries

Use cases vs user stories

Differences:

 User stories are about needs; use cases are about
the behavior to be built into the software to meet
those needs.

 User stories are easy for users to read; user cases
describe a complete interaction between the
software and users (and possibly other systems).

Alistair Cockburn:

Source: Steelman & Greene

More on the difference

“Think of a User Story as a Use Case at 2 bits of precision”:

 A user story is very simple and is written by the customer.
It is incomplete, possibly inaccurate, and does not handle
exceptional cases because not a lot of effort is expended
making sure it is correct. It serves as a starting point for
additional discussions with the customer about the full
extent of his needs.

 A use case is more complex and is written by the developer
in cooperation with the customer. It attempts to be
complete, accurate, and handle all possible cases. A lot of
effort it expended to make sure it is correct. It is intended
to answer any developer questions about customer
requirements so that developers may proceed without having
to track down the customer.

Source: Cockburn

User stories

X f (x) 0 0

1 1

2 4

3 9

4 16

... ...

Product backlog

High-level list maintained throughout project

 Aggregates backlog items: broad descriptions of all
potential features, prioritized as an absolute
ordering by business value

 Open and editable by anyone

 Contains rough estimates of both business value and
development effort

 Property of the product owner

 Associated development effort set by the Team

The task board is used to see and change the state of the
tasks of the current sprint, like “to do”, “in progress” and
“done”.

Scrum

Task board

Used to see and change the state of the tasks of the
current sprint: “to do”, “in progress”, “done”.

Scrum

Benefits:

 Transparency

 Collaboration

 Prioritization

 Focus

 Self-
organization

 Empiricism.

 Humility

Source: Cohn, Anand

Story board

.

Source: Cohn

Burndown chart

Publicly displayed chart, updated every day, showing

 Remaining work

 Progress

in the Sprint backlog

Scrum

(Normally non-
increasing)

Bullpen

Single, open room

(See “ Informative workspace” principle)

XP

.

- 3.4 -

Agile practices

3 What is agile?

Onsite customer

Seen under Principles

XP

Pair programming

Two programmers sitting at one machine

Dialog between two people, with shared keyboard & mouse

Goals:

 Keep each other on task

 Brainstorm refinements to system

 Clarify ideas

 Take initiative when other stuck, lowering frustration

 Hold each other accountable to team practices

“Avoid strong colognes” and “cover your mouth when you
cough”, “avoid sexual arousal”

Source: Beck 2005

XP

Refactoring

“Disciplined technique for restructuring an existing body of code,
altering its internal structure without changing its external behavior“

Example techniques:

Techniques that allow for more abstraction

 Encapsulate Field

 Replace conditional with polymorphism

 Extract Method

 Extract Class

 Move Method or Field

 Rename Method or Field

 Pull Up

 Push Down

Used in agile methods as a substitute for upfront design

XP
Source: Fowler

Process review

Crystal: Reflection workshop held every two weeks to

 Identify processes that are and are not working well

 Help team to modify them to develop a satisfactory
strategy

Scrum: Sprint review after a sprint

 During the sprint review the project is assessed
against the sprint goal determined during the Sprint
planning meeting

 Ideally the team has completed each product backlog
item brought into the sprint, but it is more important
that they achieve the overall goal of the sprint

Crystal Scrum

Source: Cohn

Test-Driven Development

Standard cycle:

 Add a test

 Run all tests and see if the new one fails

 Write some code

 Run the automated tests and see them succeed

 Refactor code

Expected benefits:

 Catch bugs early

 Write more tests

 Drive the design of the program

 Replace specifications by tests

 Use debugger less

 More modular code

 Better coverage

 Improve overall productivity

XP

Planning game

Meeting that occurs once per iteration

Purpose: guide the product into delivery

Instead of predicting exact delivery dates, planning game seeks to guide the
project towards delivery [

Two parts:

 Release Planning (with customers):

 Iteration Planning (developers only)

Each has three phases:

 Exploration Phase

 Commitment Phase

 Steering Phase:

XP

http://en.wikipedia.org/wiki/Planning_game

Planning poker

 Present individual stories for estimation

 Discuss

 Each participant chooses from his deck the numbered
card that represents estimate of work involved in story
under discussion

 Deck has successive numbers (quasi-Fibonacci)

 Keep estimates private until each participant has
chosen a card

 Reveal estimates

 Repeat until consensus

(Variant of Wideband Delphi technique.)

Scrum

Whole team

All contributors sit together as members of one team:

 Must include a business representative who provides
the requirements, sets the priorities, and steers the
project.

 Includes programmers

 May include testers,

 May include analysts, as helpers to the Customer,
helping to define the requirements

 Often includes a coach

 May include a manager

None of these roles is necessarily the exclusive property
of just one individual: Everyone on an XP team contributes
in any way that they can. The best teams have no
specialists, only general contributors with special skills.

XP Scrum
Source: Jeffries

Osmotic communication

Team is together in a room and listen to each other

Information to flow around it

Developer must break concentration

Information flows quickly throughout the team

Questions answered rapidly

All team updated on what is happening

Reduce need for email and other non-direct communication

Facilitate taking over of others’ tasks

Crystal

Continuous integration

The combination of frequent releases with relentless
testing

Keep system fully integrated at all times

XP

Small releases

XP teams practice small releases in two important ways:

 Release running, tested software, delivering business
value chosen by the Customer, every iteration. The
Customer can use this software for any purpose,
whether evaluation or even release to end users
(highly recommended).

 Release to end users frequently as well. Web
projects release as often as daily, in house projects
monthly or more frequently. Even shrink-wrapped
products are shipped as often as quarterly.

XP
Source: Jeffries

Coding standards

Project members all code to the same conventions

XP

Collective code ownership

See “shared code” principle

XP

Simple design

Produce the simplest design that works

Refactor as needed

XP

Daily meeting

Goal: to set the day’s work

Held every morning

Time-limited, usually 15 minutes

Involves all team members, with special role for those who
are “committed” (over those just “involved”)

Enables every team member to answer three questions:

 What did you do yesterday?

 What will you do today?

 Are there any impediments in your way?

Focus on commitments and on uncovering impediments
(responsibility of the Scrum Master)

The resolution will take place outside of the meeting

Scrum

Scrum of scrums

Each day normally after the daily scrum. These meetings
allow clusters of teams to discuss their work, focusing
especially on areas of overlap and integration

A designated person from each team attends

The agenda will be the same as the Daily Scrum, plus the
following four questions:

 What has your team done since we last met?

 What will your team do before we meet again?

 Is anything slowing your team down or getting in their
way?

 Are you about to put something in another team’s
way?

Scrum

Planning meeting

At the beginning of the sprint cycle (every 7–30 days), a
“Sprint Planning Meeting” is held. Select what work is to
be done

Prepare the Sprint Backlog that details the time it will
take to do that work, with the entire team

Identify and communicate how much of the work is likely
to be done during the current sprint

Eight hour time limit

 (1st four hours) Product Owner + Team: dialog for
prioritizing the Product Backlog

 (2nd four hours) Team only: hashing out a plan for
the Sprint, resulting in the Sprint Backlog

At the end of a sprint cycle, two meetings are held: the
“Sprint Review Meeting” and the “Sprint Retrospective”

Scrum
Source: Wikipedia

Review meeting

Review the work that was completed and not completed

Present the completed work to the stakeholders (a.k.a.
“the demo”)

Incomplete work cannot be demonstrated

Four hour time limit

Scrum

Retrospective

All team members reflect on the past sprint

Make continuous process improvements

Two main questions are asked in the sprint retrospective:

 What went well during the sprint?

 What could be improved in the next sprint?

Three hour time limit

Scrum

.

- 3.5 -

Agile methods

3 What is agile?

Scrum

Developed in 1995 by Sutherland and Schwaber for
software, based on ideas about developing commercial
processes described byTakeuchi and Nonaka in an 1986
article

Emphasizes management rather than specific software
techniques

Has been used in conjunction with CMMI

Scrum

Lean software

Mary Poppendieck, late nineties

Inspired by techniques developed for production (starting
with Deming)

7 key principles:

 Eliminate waste

 Amplify learning

 Decide as late as possible

 Deliver as fast as possible

 Empower the team

 Build integrity in

 See the whole

Lean

Scrum basics

Iterative, incremental process

Emphasis on working product, fully tested and shippable

Cross-functional team

Basic work cycle: sprint

Typically 1-4 weeks in length, fixed duration, ending on specified
date (even if work not complete)

Prioritized list of requirements

At Sprint beginning, team selects from list and commits to
completing them by end of Sprint

Each work day: daily stand up meeting

 Report to rest of team on progress

 update visual representations of work remaining

End of Sprint:

 Team demonstrates what it has built

 Gets feedback for next Sprint

Scrum

Scrum terminology

Impediment: Anything that prevents a team member from performing
work as efficiently as possible

Sprint: Period, typically 2–4 weeks, in which development occurs on a
set of backlog items that the Team has committed to

Definition of Done (DoD): exit criteria to determine whether a
product backlog item is complete. Each team has its own DoD.

Abnormal Termination: Sprint cancellation by Product Owner

Planning Poker (studied earlier)

Point Scale: an abstract point system, used to discuss the difficulty of
the story, without assigning actual hours. The most common scale used
is a rounded Fibonacci sequence (1,2,3,5,8,13,20,40,100); also Clothes
size (XS, S, M, L, XL)

Tasks: Added to the story at the beginning of a sprint and broken
down into hours. Each task should not exceed 12 hours but it's common
for teams to insist that a task take no more than a day to finish.

Source: Sutherland
Scrum

Overall Scrum process

Source: Sutherland
Scrum

Extreme Programming (XP)

Created by Kent Beck during work on Chrysler
Comprehensive Compensation System (C3) payroll project,
written in Smalltalk

Actual outcome of project is highly controversial

XP is (Beck) a “software development discipline that
organizes people to produce higher quality software more
productively”

XP

XP process

.

Source: Wells
XP

XP criteria

 Need to mitigate risk and produce working system

 Small team (2 to 12)

 Extended team, including manager and customer, “all
working elbow to elbow”

 Testability: must be able to create and run automated
unit and functional tests

 Timely delivery more important than productivity

 Produce the simplest design that works

 Refactor

Source: Wells
XP

Crystal

Created by Alistair Cockburn in mid-90s

Focused on:

 People

 Interaction

 Community

 Skills

 Talents

 Communications

Short description:

 “The lead designer and two to seven other developers … in a
large room or adjacent rooms, ... using such as whiteboards and
flip charts, ... having easy access to expert users, ... distractions
kept away, deliver running, tested, usable code to the users …
every month or two (quarterly at worst), ... reflecting and

adjusting their working conventions periodically”

Crystal

Crystal principles

 Frequent Delivery

 Reflective Improvement

 Osmotic Communication

 Personal Safety

 Focus

 Easy Access to Expert Users

 A Technical Environment with Automated Tests,
Configuration Management, and Frequent Integration

Crystal

Crystal family

.

Crystal
Source: Cockburn

Example of deliverables

Crystal orange:

 Requirements Document

 Release Sequence (Schedule)

 Project Schedule

 Status Reports

 UI Design Document (if project has a UI)

 Object Model

 User Manual

 Test Cases

Crystal

.

- 4.1 -

Conceptual analysis

4 Critical analysis

To what extent should we accept analogies?

Agile methods make considerable use of comparisons with
engineering disciplines other than software

On the other hand, would you build a house using Scrum?

Description and implementation

A bridge

A drawing of a bridge

Description-Implementation Porosity

A program text

private static boolean endsWith(String str, String suffix,
boolean ignoreCase) {
 if (str == null || suffix == null) {
 return (str == null && suffix == null);
 }
 if (suffix.length() > str.length()) {
 return false;
 }
 int strOffset = str.length() - suffix.length();
 return str.regionMatches(ignoreCase, strOffset);
 }

A program text

AccNum = token;

CustNum = token;

Balance = int;

Overdraft = nat;

AccData :: owner : CustNum

 balance : Balance

state Bank of

 accountMap : map AccNum to AccData

 overdraftMap : map CustNum to Overdraft

inv mk_Bank(accountMap,overdraftMap) ==

 for all a in set rng accountMap & a.owner in set

 dom overdraftMap and

 a.balance >= -overdraftMap(a.owner)

specification (VDM)

Related idea: single-product principle in Eiffel

Supported in EiffelStudio by Diagram Tool, multiple views of
a class (contract, interface, inheritance…) & other techniques

Single-Model Principle

All the information
about a software system

should be in the software text

Use cases and user stories

Use cases and user stories are only examples

The role of a requirements elicitation process is to go
from individual examples to actual abstractions

My view

Use cases and user stories help requirement elicitation but
not a fundamental requirement technique. They cannot
define the requirements:

 Not abstract enough

 Too specific

 Describe current processes

 Do not support evolution

Use cases are to requirements what tests are to software
specification and design

Major application: for validating requirements

User stories

X f (x) 0 0

1 1

2 4

3 9

4 16

... ...

Use cases as requirements

What use cases (and user stories) are good for

They are ways to validate the user requirements

Use cases are to requirements (specifications) what tests
are to programs

The task of requirements is to abstract from user stories

Test-Driven Development

The basic idea is sound…

 … but not the replacement of specifications by test

Major benefit: keep an up-to-date collection of regression
tests

Requirement that all tests pass can be unrealistic (tests
degrade, a non-passing test can be a problem with the test
and not with the software)

Basic TDD idea can be applied with specifications! See
Contract-Driven Development

An alternative to waterfall, spiral etc.

The cluster model

Applied in the Eiffel context since 1990

Seamless, incremental development

Seamless development:

 Single set of notation, tools, concepts, principles throughout
 Continuous, incremental development
 Keep model, implementation and documentation consistent

Reversibility: can go back and forth

These are in particular some of the ideas behind the Eiffel method

Seamless development

 Single notation, tools,
concepts, principles

 Continuous, incremental
development

 Keep model, implementation
and documentation consistent

 Reversibility: go back and
forth

Example
classes:

PLANE,
ACCOUNT,

TRANSACTION…
STATE,

COMMAND…

HASH_TABLE…

TEST_DRIVER…

TABLE…

Analysis

Design

Implemen-
tation

V&V

Generali-
zation

Generalization

Prepare for reuse. For example:
 Remove built-in limits
 Remove dependencies on

specifics of project
 Improve documentation,

contracts...
 Abstract
 Extract commonalities and

revamp inheritance
hierarchy

Few companies have the guts to
provide the budget for this

B

A*

Y

X

Z

A D I V G

Finishing a design

It seems that the sole purpose of the work of engineers,
designers, and calculators is to polish and smooth out,
lighten this seam, balance that wing until it is no longer
noticed, until it is no longer a wing attached to a fuselage,
but a form fully unfolded, finally freed from the ore, a
sort of mysteriously joined whole, and of the same quality
as that of a poem. It seems that perfection is reached,
not when there is nothing more to add, but when there is
no longer anything to remove.

(Antoine de Saint-Exupéry,
Terre des Hommes, 1937)

Reversibility

Analysis

Design

Implemen-
tation

V&V

Generali-
zation

The cluster model

Cluster
1 Cluster

2
A

D

I

V&V

G

A

D

I

V&V

G

A

D

I

V&V

G

A

D

I

V&V

G

Extremes

Cluster 1

Cluster 2

A
D

I

V&
V
G

A
D

I

V&
V
G

A
D

I

V&
V
G

A

D

I

V&V

G

“Trickle” “Clusterfall”

A

D

I

V&V

G

A

D

I

V&V

G

Cluster 1 Cluster 2

Dynamic rearrangement
Cluster

1 A

D

I

V&V

G

Cluster
2

A

D

I

V&V

G
A

D

I

V&V

G

Cluster
3

A

D

I

V&V

G

Cluster
4

Bottom-up order of cluster development

Cluster
1 A

D

I

V&V

G

A

D

I

V
&
V

G

Cluster
2 A

D

I

V&V

G

A

D

I

V
&
V

G

Cluster n
A

D

I

V&V

G

A

D

I

V
&
V

G

Time

Base technology

Specialized
functions

Start with most
fundamental
functionalities, end
with user interface

Seamless development with EiffelStudio

Diagram Tool

System diagrams can be produced automatically
from software text

Works both ways: update diagrams or update text
– other view immediately updated

No need for separate UML tool

Metrics Tool

Profiler Tool

Documentation generation tool

...

The Eiffel Software development process

Small group (8-12 developers)

Tightly knit group, have worked together for many years

Geographically distributed

All have commit rights

Experts in one particular area, but conversant with the rest of the
technology

Full-fledged compiler & IDE with numerous libraries

2.5 million lines of code (all Eiffel except about 100,000 in C)

Open-source and commercial licenses

Highly portable, all major industry platforms

Incorporates numerous outside contributions

Timeboxed development: 2 releases a year (15 November and 15 May)

Cluster model

.

- 4.2 -

Empirical evidence

4 Critical analysis

Technique adoption

(Multiple answers)
Active Stakeholder

Participation
938

AMDD 260

Code Refactoring 1467

Code Regression Testing 1383

Co-location 447

Common coding guidelines 1595

Continuous integration 1113

Database refactoring 416

Database regression testing 407

Pair programming 587

Single sourcing information 241

TDD 959

Source: Ambler 2006

Agile adoption

Have you adopted an agile methodology?

Yes

41%

No

59%

Source: Ambler 2006

Agile adoption

Have you adopted any agile technique?

Yes

65%

No

35%

Source: Ambler 2006

Effect on quality

0%2%

21%

32%13%

32%

Much Lower

Somewhat Lower

No Change

Somewhat Higher

Much Higher

Don't Know

Source: Ambler 2006

Effect on cost

.

2%

14%

34%

13%

1%

36% Much Higher

Somewhat Higher

No Change

Somewhat Lower

Much Lower

Don't Know

Source: Ambler 2006

Effect on productivity

0%4%

23%

33%

8%

32%

Much Lower

Somewhat Lower

No Change

Somewhat Higher

Much Higher

Don't Know

Source: Ambler 2006

Effect on customer satisfaction

1%1%

25%

27%11%

35%
Much Lower

Somewhat Lower

No Change

Somewhat Higher

Much Higher

Don't Know

Source: Ambler 2006

Bad experiences

91 (2%) respondents had at least one really bad experience:

 0. 5% had much lower productivity

 0.5% had much lower quality

 1.7% had much higher cost

 0.5% had much lower business satisfaction

709 (17%) had some bad experience: above, plus

 3% had somewhat lower productivity

 1.5% had somewhat lower quality

 13% had somewhat higher cost

 1.4% had somewhat lower business satisfaction

There was a correlation between knowledge and results

 E.g. The people knowledgeable with agile approaches had better
quality, stakeholder satisfaction, … than those who weren’t
knowledgeable

Source: Ambler 2006

Pair programming

Speedup Ratio:

Effort Overhead:

Source: Madeyski 2010

Pair

Pair

Pair programming: results

.
Source: Madeyski 2010

pair

Test-first programming studies (industrial)

.
Source: Madeyski 2010

Test-first programming studies (academic)

.
Source: Madeyski 10

programming

programming

Pair programming

Analysis of pair programming vs traditional code reviews

Results indicate that pairs and single programmers
applying code reviews:

 Produce programs at a similar level of correctness

 Cost about the same

Source: Müller 05

.

- 5 -

Conclusion

The good

 Acceptance of change

 Frequent iterations

 Emphasis on working code

 Tests as one of the key resources of the project

 Constant test regression analysis

 No branching

 Product (but not user stories!) burndown chart

 Daily meeting

The hype

 Pair programming

 Role of the manager

 Method keeper (e.g. ScrumMaster) as a separate role

 Planning poker

 Open offices

The ugly

 No upfront requirements

 Tests as a replacement for specifications

 User stories as a replacement for abstract
requirements

 Rejection of auxiliary products

 Rejection of a priori concern for extendibility

 Rejection of a priori concern for reusability

 Rejection of a priori architecture work

 Rejection of non-shippable artifacts

Another classification

Your work, Sir, is both new and
good, but what's new is not good and
what's good is not new
 Samuel Johnson

Good but not new

Iterative development

Role of change

Not new and not good

User stories as a substitute for requirements

New and not good

Rejection of up-front requirements

Test as a substitute for specifications

New and good!

Team empowerment (not entirely new, cf. TSP)

Daily meeting

Central role of tests, especially regression test suite

No development or bug fix without a test

Central role of code

Final observations

Software development is hard

Software quality is key

Lots of good ideas can help; there is no reason to reject
those from any particular style of software engineering

For every complex
problem there is an
answer that is clear,
simple, and wrong

 H.L. Mencken

Your work, Sir, is both new and
good, but what's new is not good and
what's good is not new
 Samuel Johnson

ANDROMAQUE: I do not understand abstractions.

CASSANDRA: As you like. Let us resort to metaphors.

 Jean Giraudoux, The Trojan WarWill Not Happen

Bibliography (1/4)

Agile Manifesto, at agilemanifesto.org/.

Scott Ambler: Agile Adoption Rate Survey, at
www.ambysoft.com/surveys/agileMarch2006.html.

Bachan Anand: Conscires site at agile.conscires.com/.

Kent Beck and Cynthia Andres: Extreme Programming Explained, Addison-
Wesley, 2nd edition, 2005.

Barry W. Boehm: Software Engineering Economics, Prentice Hall, 1981.

Barry W. Boehm & Richard Turner: Balancing Agility and Discipline – A Guide
for the Perplexed, Addison-Wesley, 2004.

Fred Brooks: The Mythical Man-Month, Addison-Wesley, 1975.

Brad Cox: Superdistribution: Objects as Property on the Electronic Frontier,
Addison Wesley. 1996.

Mike Cohn, Succeeding With Agile, Addison-Wesley, 2010.

Mike Cohn, Succeeding With Agile site, www.mountaingoatsoftware.com.

Chromatic: Extreme Programming Pocket Guide, O’Reilly, 2003.

http://agilemanifesto.org/
http://www.ambysoft.com/surveys/agileMarch2006.html
http://agile.conscires.com/
http://www.mountaingoatsoftware.com/

Bibliography (2/4)

Martin Fowler: Refactoring: Improving the design of existing code, Addison
Wesley, 1999.

Tom deMarco and Tim Lister: Peopleware: Productive Projects and Teams
(Second Edition), Dorset House, 1999.

Ron Jeffries: Xprogramming site at xprogramming.com.

Lech Madeyski: Test-Driven Development – An Empirical Development of Agile
Practice, Springer Verlag, 2010.

Bertrand Meyer: Object Success: A Manager’s Guide to Object Orientation,
Its Impact on the Corporation and its Use for Reengineering the Software
Process, Prentice Hall, 1995.

Bertrand Meyer: Object-Oriented Software Construction, 2nd edition, Prentice
Hall, 1997.

Matthias Müller: Two controlled experiments concerning the comparison of
pair programming to peer review, in Journal of Systems and Software 78,
2005, pages 166-179.

http://xprogramming.com/

Bibliography (3/4)

Bertrand Meyer: Touch of Class: Learning to Program Well, Using Objects and
Contracts, Springer-Verlag, 2009.

Bertrand Meyer: Design and Code Reviews in the Age of the Internet, in
Communications of the ACM, vol. 51, no. 9, September 2008, pages 66-71.

Mary &Tom Poppendieck: Lean Software Development site,
www.poppendieck.com.

Winston D. Royce: Managing the Development of Large Software Systems, in
Proceedings of IEEE WESCON, 1970, pages 1-9.

James Shore & Shane Warden: The Art of Agile Development, O'Reilly. 2008.

Andrew Stellman & Jennifer Greene: Building Better Software site,
www.stellman-greene.com/.

Matt Stephens & Doug Rosenberg: Extreme Programming Refactored: The
Case Against XP, Apress, 2003.

http://www.poppendieck.com/
http://www.stellman-greene.com/
http://www.stellman-greene.com/
http://www.stellman-greene.com/

Bibliography (4/4)

James Tomayko James Herbsleb: How Useful Is the Metaphor Component of
Agile Methods? A Preliminary Study, Report CMU-CS-03-152, School of
Computer Science, Carnegie-Mellon University, June 2003

Bill Wake: Exploring Extreme Programming site at xp123.com.

Doug Wallace, Isobel Raggett & Joel Aufgang: Extreme Programming for Web
Projects, Addison-Wesley, 2002.

Kelly Waters: All About Agile site, www.allaboutagile.com/.

Don Wells: Extreme Programming site, www.extremeprogramming.org/.

Joel Wenzel, In Point Form site, joel.inpointform.net.

http://xp123.com/
http://www.allaboutagile.com/
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/
http://joel.inpointform.net/

