
Chair of Software Engineering

Automatic Verification
of Computer Programs

these slides contain advanced
material and are optional

What is verification

• Check correctness of the implementation
given the specification

• Static verification
– Check correctness without executing the program

– E.g. static type systems, theorem provers

• Dynamic verification
– Check correctness by executing the program

– E.g. unit tests, automatic testing

• Automatic verification
– Push-button verification

2

Overview

• Verification is just one part of the process

• All parts can (in theory) be automated

3

Specification &
Implementation

Dynamic
Verification

Static
Verification

Fault Correction

Specification – Verification – Correction

How to get the specification

• Need machine-readable specification for
automatic verification (not just comments)

• Different variants:
– Eiffel‘s „Design by Contract“

• Built-in contracts

– .Net 4.0 „Code Contracts“
• Contracts implemented as a library

– JML „Java Modeling Language“
• Dialect of Java featuring contracts as special comments

– D „Contracts”
• Evolved from C++, built-in contracts

4
Specification – Verification – Correction

Contracts in different languages

5
Specification – Verification – Correction

deposit (amount: INTEGER)

 require

 amount >= 0

 do

 balance := balance + amount

 ensure

 balance = old balance + amount

 end

public void deposit(int amount)

{

 Contract.Requires(amount >= 0);

 Contract.Ensures(balance ==

 Contract.OldValue<int>(balance)

 + amount);

 balance += amount;

}

/*@

 requires amount >= 0;

 ensures

 balance == \old(balance)+amount

@*/

public void deposit(int amount) {

 balance += amount

}

function deposit(int amount)

__in { assert(amount >= 0);

 int oldb = balance; }

__out {

 assert(bal == oldb + amount); }

__body {

 balance += amount

} D

CodeContracts

JML

Eiffel

Writing full specifications

• Writing expressive specification is difficult

• Specifying full effect of routines

– Describing what changes

– Describing what does not change (frame condition)

6

Specification – Verification – Correction

put (v: G; i: INTEGER)
 require lower <= i and i <= upper
 ensure
 item (i) = v
 across lower |..| upper as j all
 j /= i implies item (j) = old item (j)
 end
 modifies area

old not allowed in
across expression modifies not

expressible in Eiffel

MML and EiffelBase2

• Model-based contracts use
mathematical notions for
expressing full specifications

7
Specification – Verification – Correction

put (v: G; i: INTEGER)

 -- Replace value at `i'.

 note

 modify: map

 require

 has_index (i)

 do

 at (i).put (v)

 ensure

 map |=| old map.updated (i, v)

 end

map: MML_MAP [INTEGER, G]

 -- Map of keys to values.

 note

 status: specification

 do

 create Result

 across Current as it loop

 Result :=

 Result.updated (it.key, it.item)

 end

 end

note

 model: map

class

 V_ARRAY [G]

...

end

Contract inference

• Generate contracts based on implementation

• Dynamic contract inference

– Infer contracts based on program runs

• Static contract inference

– Infer contracts without running the program

8
Specification – Verification – Correction

Dynamic contract inference

• Location invariant – a property that always
holds at a given point in the program

• Dynamic invariant inference – detecting
location invariants from values observed
during execution

• For pre- and postcondition inference, select
routine entry and exit as program points

9

...
x := 0
... x = 0

Specification – Verification – Correction

DAIKON example

• Uses templates for inferred contracts, e.g.

• Program point: ACCOUNT.deposit::ENTER

• Variables of interest: balance, amount

• Invariants:

 balance = const

 balance >= const

 amount = const

 amount >= const

 balance = amount

10

• Samples

balance 0 amount 10

balance 10 amount 20

balance 30 amount 1

x = const x >= const x = y

0

0

10

10 1

Specification – Verification – Correction

Static contract inference

• Infer precondition from postcondition/body
– Weakest precondition calculus

• Infer loop invariants from postcondition
– Generate mutations from postcondition

11
Specification – Verification – Correction

bubble_sort (a: ARRAY [T])

 require

 a.count > 0

 ensure

 sorted (a)

 permutation (a, old a)

from i := n until i = 1

invariant

 1 <= i <= n

 sorted (a[i+1..n])

 permutation (a, old a)

loop

 -- move the largest element

 -- in 1..i to position i

end

Static analysis
of program

Mutation from
postcondition

Directly from
postcondition

Dynamic verification

• Check that program satisfies its specification
by executing the program

• Manual

– Write unit tests (xUnit framework)

– Execute program and click around

• Automatic

– Random testing

12
Specification – Verification – Correction

Automatic testing with contracts

• Select routine under test

• Precondition used for input validation

– Test is valid if it passes precondition

• Postcondition used as test oracle

– Test is successful if it passes postcondition

13
Specification – Verification – Correction

Automatic testing with contracts

14

deposit (v: INTEGER)

 require

 v > 0

 do

 balance := balance + v

 ensure

 balance = old balance + v

 end

Test Execution

Test Input

Test Oracle

Successful Failed

Precondition Test valid Test invalid

Body (see postcondition) Error in program

Postcondition Test succesful Error in program

Random testing

• Create random objects

– Call random creation procedure

– Call random commands

– For arguments, generate random input

• Basic types

– Random numbers

– Interesting values: max_value, 1, 0, -1, …

15
Specification – Verification – Correction

AutoTest

• Basic operation:
– Record sequence of calls made to create objects

– Call routine under test with different objects

– If execution is ok, this is a successful test case

– If a postcondition is violated, this is a failing test case

• Improve test case generation
– Smarter input selection

(e.g. use static analysis to select objects)

– Test case minimization (removing unnecessary calls)

– Build object pool

– …

16
Specification – Verification – Correction

Static verification

• Need a model of the programming language

– What is the effect of an instruction

• Translate program to a mathematical
representation

• Use an automatic or interactive theorem
prover to check that specification is satisfied
in every possible execution

17
Specification – Verification – Correction

AutoProof process

• Translates AST from EiffelStudio to Boogie

• Uses Boogie verifier to check Boogie files

• Traces verification errors back to Eiffel source

18

EiffelStudio AutoProof Boogie

Eiffel
AST

Boogie
File

Boogie
Errors

Eiffel
Errors

Specification – Verification – Correction

AutoProof translation

19

implementation APPLICATION.make {
 var a;
entry:
 havoc a;
 assume (a!= Void) && (!Heap[a, $allocated]);
 Heap[a, $allocated] := true;
 Heap[a, $type] := ACCOUNT;
 call create.ACCOUNT.make(a);
 assert Heap[a, ACCOUNT.balance] = 0;
}

make
 local
 a: ACCOUNT
 do
 create a.make
 check a.balance = 0 end
 end

Specification – Verification – Correction

Automatic Fault Correction

20

• Build a test suite

– Manual or automatic

• Find and localize faults

– Failing test cases

– Static analysis

• Try fixes

– Apply fix templates with random code changes

• Validate fixes

– Run test suite again, now all tests have to pass

Specification – Verification – Correction

AutoFix: model-based localization

• Abstract state as boolean queries
• Find differences between passing and failing tests

21
Specification – Verification – Correction

move_item (v: G)
 -- from TWO_WAY_SORTED_SET.
 -- Move `v' to the left of cursor.
 require v /= Void ; has (v)
 local idx: INTEGER ; found: BOOLEAN
 do
 idx := index
 from start until found or after loop
 found := (v = item)
 if not found then forth end
 end
 remove
 go_i_th (idx)
 put_left (v)
 end

not is_empty
not before
not after
not isfirst

not is_empty
not before
not after
isfirst

not is_empty
not before
not after
sorted

not is_empty
before
not after
not is_empty
before
not after
sorted

Invar. from failing

not is_empty
before
not after
…

Invar. from passing

not is_empty
not before
not after
…

…

0 1 count-1 count count+1

Specification – Verification – Correction

AutoFix: instantiating fixes

• Fix schema for common fixes

22

if fail_condition then
 fixing_action
else
 original_instruction
end

if fail_condition then
 fixing_action
end
original_instruction

if before then
 forth
end
put_left(v)

Instantiate
move_item (v: G)
 require v /= Void ; has (v)
 local idx: INTEGER ; found: BOOLEAN
 do
 idx := index
 from start until found or after loop
 found := (v = item)
 if not found then forth end
 end
 remove
 go_i_th (idx)
 put_left (v)
 end

Demo

• AutoTest

• AutoProof

• AutoFix

23
Specification – Verification – Correction

Eiffel Verification Environment (EVE)

• Research branch of EiffelStudio
• Integrates most tools developed by us

– AutoTest (dynamic verification)

– AutoProof (static verification)

– AutoFix (fault correction)

– AutoInfer (dynamic contract inference)

– MultiStar (static verification)

– AliasAnalysis (static analysis)

• Other tools currently not integrated
– CITADEL (dynamic contract inference)

– gin-pink (static loop invariant inference)

24

Putting It All Together

25

EVE AutoTest
AutoProof
MultiStar

Element
Statically
Verified

AutoFix

Manual
Proof

CITADEL
AutoInfer

Manual
Fixes

Element
Dynamically

Verified

proof
failed

tests
ok

no fix
found

fix
found

tests failed

tests ok

proof ok
no new contracts

new
contracts

proof
ok

AliasAnalysis

gin-pink

static inference

References

• EVE: Eiffel Verification Environment
http://se.inf.ethz.ch/research/eve/

• AutoTest, AutoProof, AutoFix, CITADEL, …
http://se.inf.ethz.ch/research/

• CodeContracts
http://research.microsoft.com/en-us/projects/contracts/

• Java Modeling Language (JML)
http://www.cs.ucf.edu/~leavens/JML/

• D Programming Language
http://dlang.org/

• Daikon
http://groups.csail.mit.edu/pag/daikon/

• Boogie Verifier
http://boogie.codeplex.com/

26

http://se.inf.ethz.ch/research/eve/
http://se.inf.ethz.ch/research/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://www.cs.ucf.edu/~leavens/JML/
http://dlang.org/
http://dlang.org/
http://groups.csail.mit.edu/pag/daikon/
http://groups.csail.mit.edu/pag/daikon/
http://groups.csail.mit.edu/pag/daikon/
http://boogie.codeplex.com/
http://boogie.codeplex.com/

