
Chair of Software Engineering

Beyond Eiffel

these slides contain advanced
material and are optional

Beyond Eiffel

• Eiffel was used in the course to introduce you
to programming

• The goal is not to learn programming Eiffel

• The goal is to

– Understand programming

– Learn the concepts of programming

– Learn how to programm well

2

How to program well

• Understand fundamental concepts of
programming

• Understand when and how to apply these
concepts

• Write code with readability in mind

• Know the language you are using

• Experience

• More experience

3

Which language should you use?

• All programming languages have advantages and
disadvantages
– Ease of use

– Performance characteristics (speed, memory)

– Applicability to problem domain

– Availability of libraries and supporting tools

– Personal experience

– Company expertise / existing codebase

– ...

• Know the problem you want to solve

• Select the language accordingly

4

Programming language frequency

TIOBE index top 10 languages December 2012 (sum up to 80%)

1. C 18.7%

2. Java 17.6%

3. Objective-C 11.1%

4. C++ 9.2%

5. C# 5.5%

6. PHP 5.5%

7. (Visual) Basic 5.2%

8. Python 3.8%

9. Perl 2.2%

10. Ruby 1.7%

5 Source: http://www.tiobe.com/index.php/tiobe_index

Paradigms
Object-oriented 58.5%
Procedural 36.9%
Functional 3.2%
Logical 1.4%

Type systems
Statically typed 71.4%
Dynamically typed 28.6%

http://www.tiobe.com/index.php/tiobe_index
http://www.tiobe.com/index.php/tiobe_index
http://www.tiobe.com/index.php/tiobe_index

Learning a new language

• Learning a new language consists of

– Learning the syntax (fast)

– Mapping known programming concepts to new
syntax (fast)

– Learning the conventions (medium)

– Learning the libraries (long)

6

Some concepts in various languages

• Namespaces

• Encapsulation

• Inheritance

• Generics

• Contracts

• Function objects

7

Namespaces

• Global (Eiffel)

• Directory-based packages (Java)

– Warnings if directory structure does not follow
packages

• File-based modules (Python)

– Module name = file name

• User-declared (C#)

– Declare (multiple) arbitrary namespaces per file

8

Encapsulation

• Export status (Eiffel)
– Granularity level of classes, no fully private

– Attributes never writable from outside class

• Access modifier (Java, C#, C++, PHP)
– Public (full acccess), private (only inside the class),

protected (class + subclasses)

• Naming conventions (Python)
– No access modifiers

– Names starting with underscore should not be
accessed from outside the class

9

Inheritance

• Static multiple inheritance (Eiffel, C++)
– Name-Routine mapping defined at compile-time
– Various conflict resolution schemes (renaming, virtual)

• Dynamic multiple inheritance (Python)
– Inheritance ordering matters
– Name resolution depth-first, left-to-right (+special

cases)

• Single inheritance + Interfaces (Java, C#)
– Single inheritance of full classes
– Multiple inheritance of interfaces only

• Single inheritance (PHP)

10

Generics

• Generics (Eiffel)

• Generics (Java)

– Safe co- and contravariance (Wildcards)

– Type erasure

• Generics (C#)

– No conformance

• Templates (C++)

• Dynamic typing (Python, PHP)

11

Contracts

• Built-in contracts (Eiffel)

• Contracts as a library (C#)

– Library offering calls that are interpreted as
preconditions / postconditions / invariants

• Assert statements (Java, C, Python)

– Assertion in the beginning is a precondition

– Assertion in the end is a postcondition

– No contract inheritance

12

Function objects

• Agents (Eiffel)
– Unique: open/closed arguments, open targets

• Function pointers (C)
• Functor (C++)
• Delegates (C#)
• Closures (Python)
• Anonymous inner classes (Java <8)
 See http://en.wikipedia.org/wiki/Function_object

• Lambda expressions (Java 8)

– http://www.informit.com/articles/article.aspx?p=1963535
&seqNum=2

 13

http://en.wikipedia.org/wiki/Function_object
http://www.informit.com/articles/article.aspx?p=1963535&seqNum=2
http://www.informit.com/articles/article.aspx?p=1963535&seqNum=2

