E,H Ziirich

Chair of Software Engineering

Einfihrung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 2

Organizational

» Assignments
> One assignment per week
> Will be put online Monday (around 18:00)

> Should be handed in within nine days
(Wednesday, before 23:59)

> Testat

> You have to hand in n - 1 out of n assignments
Must include the last one
Show serious effort

> You have to hand in two mock exams

> Military service or illness -> contact assistant
» Group mailing list

> TIs everybody subscribed (got an email)?

Today

> Give you the intuition behind object-oriented (OO)
programming

» Teach you about formatting your code

> Differentiate between
> feature declaration and feature call
> commands and queries

Understand feature call chains

Get to know the basics of EiffelStudio

Y VYV

Classes and objects ©

» The main concept in Object-Oriented programming is the
concept of Class.

> Classes are pieces of software code meant to model
concepts, e.q. "student”, "course”, "university".

> Several classes make up a program in source code form.

» Objects are particular occurrences ("instances"”) of
concepts (classes), e.g. "student Reto” or "student Lisa".

» A class STUDENT may have zero or more instances.

Classes and objects (continued)

> Classes are like templates (or molds) defining status and
operations applicable to their instances.

> A sample class STUDENT can define:
> A student's status: id, name and birthday

> Operations applicable to all students: subscribe to a
course, register for an exam.

» Each instance (object) of class STUDENT will store a
student’s name, id and birthday and will be able to
execute operations such as subscribe to a course and
register for an exam.

» Only operations defined in a class can be applied to its
Instances.

©

Features

> A feature is an operation that may be applied to all
the objects of a class.

> Feature declaration vs. feature call

> You declare a feature when you write it into a class.
set_name (a_name: STRING)
-- Set "name’ to “a_name'.
do
name := a_name
end
name: STRING

> You call a feature when you apply it to an object.
The object is called the target of this feature call.
* a_person.set_name ("Peter”)

> Arguments, if any, need to be provided in feature calls.
« computer.shut_down
« computer.shut_down_after (3)

Features: Exercise

» Class BANK_ACCOUNT defines the following operations:
> deposit (a_num: INTEGER)
» withdraw (a_num: INTEGER)
» close

> If b: BANK_ACCOUNT (b is an instance of class
BANK_ACCOUNT) which of the following feature calls are
possible?

> b.deposit (10)
b.deposit

b.close

b.close ("Now”)
b.open

b.withdraw (100.50)
b.withdraw (0)

YV V V V VYV VY
(X XX AXS

Class text ©

class PREVIEW < Class name |
feature _] Feature declar'a’rionl

explore « , _ Comment |
-- Explore Zurich.<

Feature | > do

body central_view. hlgh//ghf

zurich_map .animate
end ’K‘
end I

“TInstructions

Style rules

ﬁass nhames are in upper-case\

Use tabs, not spaces, to
highlight the structure of the
program: it is called indentation.

For feature names, use full
words, not abbreviations.

Always choose identifiers that
clearly identify the intended role

Use words from natural language
(preferably English) for the
names you define

class
PREVIEW
feature
explore
-- Explore Zurich.
do

central_view.highlight

|4 [d zurich_map.animate

For multi-word identifiers, use
underscores

=

Another example ©

class
BANK _ACCOUNT

feature /’__/;—J-LI

deposit (a_sum: INTEGER)
-- Add “a_sum' to the account.

do Within comments, use * and ' to

guo‘re names of arguments and
eatures. This is because they
will be taken into account by the
automatic refactoring tools.

balance := balance + a_su
end

balance: INTEGER

end ‘ Attribute |

The state of the object is defined by the values of its
attributes

Kinds of features: commands and queries

> Commands

>

>
>
>

Modify the state of objects
Do not have a return value
May or may not have arguments

Examples: register a student to a course, assign an id to a
student, record the grade a student got in an exam

> ..other examples?
> Queries
> Do not modify the state of objects
> Do have a return value
> May or may not have arguments
> Examples: what is the age of a student? What is the id of a

student? Is a student registered for a particular course?
.. other examples?

11

Exercise: query or command?

V V VYV V

YV V VYV VY

What is the balance of a bank account?
Withdraw 400 CHF from a bank account
Who is the owner of a bank account?

Who are the clients of a bank whose total deposits are
over 100,000 CHF?

Change the account type of a client
How much money can a client withdraw at a time?

Set a minimum limit for the balance of accounts
Deposit 300 CHF into a bank account

12

Command-query separation principle

"Asking a question shouldn’'t change the answer”

‘i.e. a quer'y|

13

Query or command?
class DEMO
feature g;command
procedure_name (al: T1; a2, a3: T2) > no result
-- Comment > body
do
end
J query |
function_name (al: T1 a2, a3: T2): T3 > result
-- Comment > body
do Predefined variabl
Result := .. |denoting the result
end
J query |
attribute_name: T3 > result
-- Comment > no body

end

14

Features: the full story ©

C/iemf v/eW Internal view
(specification) (implementation)

Command — Procedure \
No result Routine
Compuf;k
Feature . eature
emory

&ums result Function
mi:n
Queryw
Attribute

15

General form of feature call instructions

Objectl.queryl.command (ob ject2.query2, ob Jecf3)

\\// W, N
| ’rarge’rs | |argumen‘rs|

» Targets and arguments can be query calls themselves.

> Where are qgueryl, gueryZ2 defined?
» Where is command defined?

16

Qualified vs. unqualified feature calls

» All features have to be called on some target.

> The current object of a feature is the object on which the
feature is called. (what's the other name for this object?)

> A qualified feature call has an explicit target.

> Anunqualified feature call is one whose target is the current
object. The target is left out for convenience.

assigh_same_name (a_name: STRING, a_other_person: PERSON)

“a_other_person'.

personl

—-Set a W Qualified call
do —
her Unqualified call, same as
s Current.set_name (a_name)
end a

assign_same_hame

lans——pers{ set_name

caller

call
callee

17

EiffelStudio

> EiffelStudio is a software tool (IDE) to develop Eiffel

programs.

> Help & Resources

>

Vv V V VY VY

Online guided tour: in EiffelStudio help menu
http://eiffel.com/developers/presentations/
http://www.eiffel.com/

http://dev.eiffel.com/

http://docs.eiffel.com/

http://www.ecma-international.org/publications/

files/ECMA-ST/ECMA-367 pdf

| In’regr'a’red DeveIoEmen‘r Environment ﬁ

18

Components

YV V V V V VY V

editor

context tool
clusters pane
features pane
compiler
project settings

19

Editor

YV V V V V VY V

Y VYV

Syntax highlighting

Syntax completion

Auto-completion (CTRL+Space)

Class name completion (CTRL+SHIFT+Space)
Smart indenting

B

B
S

ock indenting or unindenting (TAB and SHIFT+TAB)
ock commenting or uncommenting (CTRL+K and

HIFT+CTRL+K)

Infinite level of Undo/Redo (reset after a save)

Quick search features (first CTRL+F to enter words
then F3 and SHIFT+F3)

Pretty printing (CTRL+SHIFT+P)

20

Compiler highlights

» Melting: uses quick incremental recompilation
to generate bytecode for the changed parts
of the system. Used during development
(corresponds to the button "Compile”).

> Freezing: uses incremental recompilation to
generate more efficient C code for the
changed parts of the system. Initially the
system is frozen (corresponds to "Freeze..").

» Finalizing: recompiles the entire system
generating highly optimized code. Finalization
performs extensive time and space
optimizations (corresponds to "Finalize...")

|
4
N

(J
—

-\
JJ/\’T‘

21

Debugger: setup

>

>

The system must be melted/frozen (finalized systems
cannot be debugged).

Setting and unsetting breakpoints

> An efficient way consists in dropping a feature in
the context tool.

> Alternatively, you can select the flat view

> Then click on one of the little circles in the left
margin to enable/disable single breakpoints.

Use the toolbar debug buttons to enable or disable all
breakpoints globally.

22

Debugger: run

Y V

Run the program by clicking on the Run button.

Pause by clicking on the Pause button or wait for a
triggered breakpoint.

Analyze the program:

> Use the call stack pane to browse through the
call stack.

> Use the object tool to inspect the current
object, the locals and arguments.

Run the program or step over (or into) the next
statement, or out of the current one.

Stop the running program by clicking on the Stop
button.

23

Found a bug in EiffelStudio?

If EiffelStudio happens to crash:

> You should submit an official bug by pressing the
button appearing together with the crash

> Login: ethinfol, Password: ethinfol

24

How to submit a bug 1: submit bug ©

[+ base
- base_pr
(3 project

&3 EiffelStudio Error

@ Internal EiffelStudio Exception

ion
An internal failure occurred. If this happens even after relaunching EiffelStudio, perform a clean
recompilation.

n.

N You can submit a bug report at http://support.eiffel.com or use the Submit Bug button below.

fel i’lcrl« P*&&&&&&&\b&\b&\b\b\b*\b*\b*&**\b\b\b\bb\bb\b mread exception e -

In thread Root thread 0x0 (thread id) |

R

Class / Object Routine Nature of exception Effect
EB_COMMAND EXECUTOR eif_ link driver Invalid argument:
<000000000314E608> (From COMMAND EXECUTOR)

I/0 error. Fail

EB_COMMAND EXECUTOR eif link_driver
<000000000314E608> (From COMMAND_EXECUTOR) -

[Submit Bug] ‘\)Save Trace]

" Ignore
ﬂ .

25

How to submit a bug 2: login

;ion

m.

¢ here
fel Werld

4

/
&3 EiffelStudio Error I

&3 Submit EiffelStudio Unhandled Exception y

@ Internal E

An internal
recompilat

You can sul§k

LR n

In threaq
R R I

Account Access

Username: ethinfol

Password: eeeesssse

)

m
m

=8_comal

=8_comal

<0000000 l

~
Project loaded: True =
Project compiled: True
Is compiling: False
Last known class processed: NEW_3 -

|| Make bug publicly available

Critical Non Critical

| Submit | | Cancel]|

@) Serious

Sewverity:

©

-l base
. - base_pr
...{ ;& project

|.

2|

<=1

u“. -~

26

How to submit a bug 3: submit

ﬂj base
- base_pre
“..{ & project

|\

(€ Eiffelstudio Error | &3 Submit EiffelStudio Unhandled Exception (S

You are currently logged in as ethinfol Log out
@ Internal E Bug Information

ation
An internal /0 error in {COMMAND_EXECUTOR}.eif_link_driver in EiffelStudio. Ban
_ recompilatif
ion. ~
de h You can sul)
ne ners Project loaded: True
iffel World Imw.«nuwuu T Project compiled: True

In thread| |Is compiling: False
hihehhiebds | Last known class processed: NEW_3
-------- Last status message: Degree 6: Examining System: base

Class /7 4 Efect
=8 _comall
<00000004"
‘Bil
=8_comvall
<0000000F >
Make bug publicly available l
Severity: () Critical @ Serious () Non Critical
\ mbmﬁ

