m Ziirich

Chair of Software Engineering

Software Verification
Exercise class:
Model Checking

Exercises:
Semantics of derived operators

LTL derived operators: eventually

Prove that the satisfaction relation

w,ie<xF

for eventually, defined as:

&F 2TrueUF

is equivalent to:

forsomei<j<nitisiw, jEF

LTL derived operators: eventually

w,ie<xF
iff

w,iE True UF (definition of eventually)
iff

forsomei<j<nitisiw, jEF

and foralli<k<jitisw, k E True (definition of until)
iff

forsomei<j<nitisiw, jEF

(simplification of A and True)

LTL derived operators: always

Prove that the satisfaction relation
w,iE[]F
for always, defined as:
[1F 2-<-F
is equivalent to:

foralli<js<nitisiw, jrF

LTL derived operators: always

w,ik[]F
iff
w,ikE-<aF (definition of always)
iff
w, i E<>=F is not the case (definition of not)
iff
it is not the case that: for somei< j<nitisiw, jE-F
(semantics of eventually)
iff
foralli< j<nitisnot the case that w, j k -F
(semantics of quantifiers: pushing negation inward)
iff
foralli< j<niitisnot the case that it is not the case thatw, j £ F
(semantics of negation)
iff
foralli<j<nitisiw, jeF

(simplification of double negation)

Exercises:
Evaluate LTL formulas on automata

Does the property hold?

[1 (start = <> stop)

closed
off
closed
on

closed
cooking

Does the property hold?

[1 (start = <> stop)

closed
off

tu
closed
on

closed

Yes:
whenever start occurs we
reach state closed-cooking

« we must eventually exit
state closed-cooking to
reach the only accepting
state closed-off

« state closed-cooking can be
exited only if stop occurs

cooking

Does the property hold?

closed
off
off
tu
closed
on

closed

cooking

[]1 <> turn_off

Does the property hold?

closed
off
closed
on

closed

[]1 <> turn_off

No:
« counterexample:
pull push

cooking

11

Does the property hold?

closed pull
off push
turnloff
turn_on
pull
closed
on push
stop
start
closed
cook

cooking

open

off

open

on

©

[1 <> (turn_offvpush)

12

Does the property hold?

©

closed pull
off push
turnloff
turn_on
pull
closed
on push
stop
start
closed
cook

cooking

open

off

open

on

[1 <> (turn_offvpush)

Yes:

* every accepting run
eventually goes back to
state closed-of f

» state closed-off can be
reached only if either
turn_off or push occurs

* the empty word is also
compliant with the
semantics of the always
operator

13

Does the property hold?

closed
off
closed
on

closed
cooking

<> (turn_off v push)

14

Does the property hold?

closed

<> (turn_off v push)

tu

No:
« counterexample:
the empty word
(compare the semantics of
existential quantification
against universal
quantification)

closed

closed

cooking
15

Does the property hold?

closed
off
closed
on

closed
cooking

[] False
V
<> (turn_off Vv push)

Does the property hold?

closed
off

tu

closed

closed

cooking

<>

[] False
Vv
(tfurn_off v push)

Yes:

“always False" means that False
holds at every step in the word:
it is satisfied precisely by the
empty word

if the word is not empty, then
it must end with turn_off or
push, thus it satisfies the
other disjunct

17

Does the property hold?

closed
off
closed
on

closed
cooking

turn_on U start
V

pull U push

Does the property hold?

closed
off

tu

closed

closed

cooking

turn_on U start
V

pull U push

No:
* counterexample:
the empty word
 counterexample:
turn_on turn_off
 counterexample:
turn_on pull push turn_off

19

Does the property hold?

[1(start >
(cook U <>turn_off))

closed
off
closed
on

closed
cooking

20

Does the property hold?

[] (start =
Flosed (cook U <>turn_off))
Yes:

* once start occurs, turn_off
must occur eventually

* hence "eventually turn_off"
is the case right after start
occurs

 cook can occur right after
start occurs, onhe or more
times

tu
closed
on

closed

cooking

21

Exercises:
Equivalence of LTL formulas

22

Equivalence of formulas

Prove that <> is idempotent, that is:

<><> q

IS equivalent to:

<>q

23

Equivalence of formulas

W, E <<>q
iff
forsomei<jsnitisiw, jE<q (semantics of eventually)
iff
for some i< j<nitis: forsome j<h<nitisiw, hegq
(semantics of eventually)
iff
forsomei<j<h<nitisiw, hEg
(merging of intervals)
iff
forsomei<h<nitisiw,hEgq
(dropping j, a fortiori)
iff

W, i E<>(q
(semantics of eventually)

24

Equivalence of formulas

Prove that:

pU<«q

IS equivalent to:

<>q

25

Equivalence of formulas: = direction

w,ikEpU=<q
iff
for somei<jsnitisiw, jE<q
and foralli<k<jitisw,kEp (semantics of until)
implies

forsomei<jenitisiw, jE<g (a fortiori)
iff

for somei<j<nitis: forsome jchenitisiw,hkq
(semantics of eventually)
iff
for somei<h<nitisiw,hEkgq
(simplification of range of quantification)

iff
w,iE<q (semantics of eventually)

26

Equivalence of formulas: < direction

w, E<>q
iff
forsomeic<j<itw, jE<q (singleton range of quantification)
iff
forsomei<j<itw, jE<>g and True (semantics of and)
iff
forsomei<jcitw,jE<Qq
and foralli<k< j=iitisw,kEp (semantics of universally quantified empty range)
implies

forsomei<j<niw, jE<q

and foralli<k<jitisw, kEp (a fortiori)
iff

w,iepU=<gq (semantics of until)

27

Exercises:
Automata-theoretic model-checking
(on paper)

28

Automata-based model checking ©

closed
off
closed
on

closed
cooking

[]1<> turn_off

Let us prove by
model checking that
it's not a property
of the automaton

29

LTL2FSA

Build an automaton with the same language as:

-([1 < turn_off)

Let us start from the unnegated formula:
[1<> turn_off

and then complement the states of the automaton

30

LTL2FSA

[] <> turn_off

—turnloff turn.

off

@ off

31

LTL2FSA

-([1 <> turn_off) :
A

—turnloff turnloff

@ off

32

FSA Intersection

closed
off

tu

—turnloff turnloff

bﬁr

33

closed

cooking

FSA Intersection

closed
cooking

B

closed

34

FSA-Emptiness: node reachability

Any accepting run on the intersection automaton is a
counterexample to the LTL formula being a property of
the automaton

closed
of
\/
clo
o)

f
tu
sed
n

closed

®pull push
® pull push pull push
0.

\/ $
closed
cooking
¥8/
35

