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Program Verification: the very idea 

max (a, b: INTEGER): INTEGER is 

 do 

  if a > b then 

   Result := a 

  else 

   Result := b 

  end 

 end 

 

 require 

  true 

 

 ensure 

  Result >= a 

  Result >= b 

 

P: a program S: a specification 

Does            P ⊧ S               hold? 

The Program Verification problem: 

 Given: a program P and a specification S 

 Determine: if every execution of P, for every value of input parameters, 
satisfies S 
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Why is Verification Difficult? 

P: a program S: a specification 

Does       TM(P) ⊧ F(S)          hold? 

The very nature of universal (Turing-complete) computation 

entails the impossibility of deciding automatically the 

program verification problem. 

TM(P): a Turing machine F(S): a first-order formula 

⇕ ⇕ 

UNDECIDABLE 
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Decidability vs. Expressiveness Trade-Off 

If we restrict the expressiveness of: 

the computational model 

and/or 

the specification language 

the verification problem may become decidable 

Def. Expressiveness: capability of describing 
extensive classes of: 

 computations 

 properties 

Does       P ⊧ S          hold? 
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Verification of Finite-state Programs 
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Verification of Finite-state Programs 

Does        P ⊧ S         hold? 

In Model Checking we typically assume: 

finite-state programs 

 every variable has finite domain 

 bounded dynamic allocation 

 bounded recursion 

monadic first-order logic 

 restricted first-order logic fragment where the ordering of 
state values during a computation can be expressed 

P: a finite-state program S: a monadic first-order specification 

DECIDABLE 
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Verification of Finite-state Programs 

Does        P ⊧ S         hold? 

In Model Checking we typically assume: 

finite-state programs 

equivalently: finite-state automata of some kind 

monadic first-order logic 

equivalently: temporal logic of some kind 

P: a program S: a specification 

DECIDABLE 

FSA(P): a finite-state automaton TL(S): a temporal logic formula 
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Model-checking in Pictures 

is_locked: BOOLEAN 

toggle_lock: 

 do 

  is_locked := not is_locked 

 end 

 

 

 

 ensure 

  is_locked = not old is_locked 

P: a program S: a specification 

FSA(P): a finite-state automaton TL(S): a temporal logic formula 

|= [] ( toggle_lock  X toggle_lock) 
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Finite-state Programs in the Real World 

A few examples: 

 Behavior of hardware 

inherently finite-state 

 Concurrency aspects 

access to critical regions, scheduling of processes, ... 

 Security aspects 

access policies, protocols, ... 

 Reactive systems 

ongoing interaction between software and physical environment 

Can finite-state models capture 

significant aspects of real programs? Yes! 
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Is the Abstraction Correct? 

How to guarantee that the finite-state abstraction 
of an infinite-state program is accurate? 

 In hardware verification, the real system is finite-
state, so no abstraction is needed 

 The finite-state model can be built and verified before 
the real implementation is produced 

A formal high-level model: increased confidence in 
some key features of the system under development 

Model-driven development: the implementation is 
derived (almost) automatically from the high-level 
finite-state model 
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Is the Abstraction Correct? 

How to guarantee that the finite-state 

abstraction of an infinite-state program is 

accurate? 

 Software model-checking: the abstraction is built 

automatically and refined iteratively until we can 

guarantee that it is an accurate model of the real 

implementation for the properties under 

verification 
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The Model-Checking Paradigm 
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The Model-Checking Paradigm 

A: a finite-state automaton F: a temporal-logic formula 

⊧ 

The Model Checking problem: 

 Given: a finite-state automaton A and 
       a temporal-logic formula F 

 Determine: if every run of A satisfies F or not 

if not, provide a counterexample: 
a run of A where F does not hold 

[] (toggle_lock  ⇔ X toggle_lock) 
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The Model-Checking Paradigm 

A: a finite-state automaton F: a temporal-logic formula 

⊧ 

Different choices are possible for the kinds 

of automata and of formulae. 

 We now describe more details for 

linear-time model-checking where: 

A is a (nondeterministic) finite state automaton 

F is a propositional linear temporal logic formula 

[] (toggle_lock  ⇔ X toggle_lock) 
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Finite State Automata: Syntax 
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Finite State Automata: Syntax 

Def. Nondeterministic Finite State Automaton (FSA): 

  a tuple [Σ, S, I, ρ, F]: 

 Σ: finite nonempty (input) alphabet 

 S: finite nonempty set of states 

 I ⊆ S: set of initial states 

 F ⊆ S: set of accepting states 

 ρ: S x Σ → 2S: transition function 
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Finite State Automata: Syntax 

Def. Nondeterministic Finite State Automaton (FSA): 
  a tuple [Σ, S, I, ρ, F]: 

 Σ: finite nonempty (input) alphabet 

 S: finite nonempty set of states 

 I ⊆ S: set of initial states 

 F ⊆ S: set of accepting states 

 ρ: S x Σ → 2S: transition function 

 Σ = { pull, push, turn_on, turn_off, start, 
    stop, cook } 

 S = { closed-off, open-off, closed-on, 
    open-on, closed-cooking } 

 I = { closed-off } 
 F = { closed-off } 
 ρ(closed-off, turn_on) = { closed-on } 
 ρ(..., ...) = ... 

 Deterministic, in this example (“microwave oven”) 
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Finite State Automata: Semantics 

Accepting run 
r = closed-off closed-on closed-cooking 
   closed-cooking closed-on closed-off 

over input word 
w = turn_on start cook stop turn_off 
 

Rejecting run 
r' =closed-off open-off closed-off 
 closed-on 

over input word 
w' = pull push turn_on 
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Finite State Automata: Semantics 

Def. An accepting run of an FSA A=[Σ, S, I, ρ, F] 

   over input word w = w(1) w(2) ... w(n) ∈ Σ* 

  is a sequence r = r(0) r(1) r(2) ... r(n)∈ S* 

  of states such that: 

it starts from an initial state:  r(0) ∈ I 

it ends in an accepting state:   r(n) ∈ F 

it respects the transition function:  

  r(i+1) ∈ ρ(r(i), w(i))    for all 0 ≤ i < n 
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Finite State Automata: Semantics 

Def. An accepting run of an FSA A=[Σ, S, I, ρ, F] 
over input word w = w(1) w(2) ... w(n) ∈ Σ* 
is a sequence r = r(0) r(1) r(2) ... r(n)∈ S* 
of states such that: 

it starts from an initial state: r(0) ∈ I 

it ends in an accepting state:  r(n) ∈ F 

it respects the transition function:  
 r(i+1) ∈ ρ(r(i), w(i))  for all 0 ≤ i < n 

 Accepting run 

r = closed-off closed-on closed-cooking 

   closed-cooking closed-on closed-off 

 Over input word 

w = turn_on start cook stop turn_off 

 In practice: any path on the directed graph 

that starts in an initial state and ends in an 

accepting state 
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Finite State Automata: Semantics 

Def. Any FSA A=[Σ, S, I, ρ, F] defines 

    a set of input words ⟨A⟩: 

   ⟨A⟩ ≜ { w ∈ Σ*  |  there is an 

                            accepting run of A 

                           over w } 

 

        ⟨A⟩ is called the language of A 
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Finite State Automata: Semantics 

Def. Any FSA A=[Σ, S, I, ρ, F] defines 
   a set of input words ⟨A⟩: 
   ⟨A⟩ ≜ { w ∈ Σ*  |  there is an 
                            accepting run of A 
                               over w } 

        ⟨A⟩ is called the language of A 

With regular expressions: 

 

⟨A⟩ = (  (pull push)* (turn_on 

     (pull push)* 

   (start cook* stop)* 

   (pull push)* 

       turn_off)*   )* 
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Linear Temporal Logic: Syntax 

Def. Propositional Linear Temporal Logic (LTL) formulae 

 are defined by the grammar: 

  F  ::=  p  |  ¬ F  |  F ∧ G  |  X F  |  F U G 

with p ∈ P any atomic proposition from a fixed set P. 

Propositional connectives: 

 not:     ¬ F 

 and:    F ∧ G 

 or:    F ∨ G  ≜ ¬ (¬F ∧ ¬G) 

 implies: F ⇒ G  ≜ ¬F ∨ G 

 iff: F ⇔ G ≜ (F ⇒ G) ∧ (G ⇒ F) 

Temporal (modal) operators: 

 next:    X F 

 until:   F U G 

 release:  F R G ≜ ¬ (¬F U ¬G) 

 eventually:   <> F    ≜ True U F 

 always:  [] F    ≜ ¬ <> ¬F 
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Linear Temporal Logic: Syntax 

Def. Propositional Linear Temporal Logic (LTL) formulae 

 are defined by the grammar: 

  F  ::=  p  |  ¬ F  |  F ∧ G  |  X F  |  F U G 

with p ∈ P any atomic proposition from a fixed set P. 

[] ( start ⇒ X (cook U stop) ) 
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Linear Temporal Logic: Semantics 

 [] ( start ) 

 

 X ( cook ) 

 

 [] ( X cook ) 

 

 cook ∧ [] ( X cook ) 

 

 stop ∧ start 
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Linear Temporal Logic: Semantics 

 [] ( start ) 

start, start, start, ... 

 X ( cook ) 

 

 [] ( X cook ) 

 

 cook ∧ [] ( X cook ) 

 

 stop ∧ start 
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Linear Temporal Logic: Semantics 

 [] ( start ) 

start, start, start, ... 

 X ( cook ) 

[any], cook, [any], ... 

 [] ( X cook ) 

 

 cook ∧ [] ( X cook ) 

 

 stop ∧ start 
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Linear Temporal Logic: Semantics 

 [] ( start ) 

start, start, start, ... 

 X ( cook ) 

[any], cook, [any], ... 

 [] ( X cook ) 

[any], cook, cook, cook, 

... 

 cook ∧ [] ( X cook ) 

cook, cook, cook, cook, 

... 

 stop ∧ start 
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Linear Temporal Logic: Semantics 

 [] ( start ) 

start, start, start, ... 

 X ( cook ) 

[any], cook, [any], ... 

 [] ( X cook ) 

[any], cook, cook, cook, 

... 

 cook ∧ [] ( X cook ) 

cook, cook, cook, cook, 

... 

 stop ∧ start 

Ø 
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Linear Temporal Logic: Semantics 

Def. A word w = w(1) w(2) ... w(n) ∈ P* 
     satisfies an LTL formula F 
       at position 1 ≤ i ≤ n, denoted w, i ⊧ F, 
     under the following conditions: 

w, i ⊧ p        iff    p = w(i) 

w, i ⊧ ¬ F       iff    w, i ⊧ F does not hold 

w, i ⊧ F ∧ G        iff    both w, i ⊧ F  and w, i ⊧ G hold 

w, i ⊧ X F       iff    i < n and w, i+1 ⊧ F 

 i.e., F holds in the next step 

w, i ⊧ F U G       iff    for some i ≤ j ≤ n it is: w, j ⊧ G 
                             and for all i ≤ k < j it is w, k ⊧ F 

 i.e., F holds until G will hold 
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Linear Temporal Logic: Semantics 

For derived operators: 

w, i ⊧ <> F      iff    for some i ≤ j ≤ n it is: w, j ⊧ F 

 i.e., F holds eventually (in the future) 
 

w, i ⊧ [] F      iff    for all i ≤ j ≤ n it is: w, j ⊧ F 

 i.e., F holds always (in the future) 
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Linear Temporal Logic: Semantics 

Def. Satisfaction: 
              w ⊧ F    ≜   w, 1  ⊧ F 

i.e., word w satisfies formula F initially 

Def. Any LTL formula F defines a set of words ⟨F⟩: 

    ⟨F⟩ ≜ { w ∈ P*  |  w ⊧ F } 

       ⟨F⟩ is called the language of F 
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Linear Temporal Logic: Semantics 

Def. Any LTL formula F defines a set of words ⟨F⟩: 

    ⟨F⟩ ≜ { w ∈ P*  |  w ⊧ F } 

      ⟨F⟩ is called the language of F 

⟨ [] start ⟩ = start, start, start, ... 
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Verification as Emptiness Checking 

A: a finite-state automaton F: a temporal-logic formula ⊧ 

The Model Checking problem: 

 Given: a finite-state automaton A and a temporal-logic 
formula F 

 Determine: if every run of A satisfies F or not 

if not, also provide a counterexample: 
a run of A where F does not hold 

? 

⇕ ⇕ 
⟨A⟩ = words accepted by A ⟨F⟩ = words satisfying F 
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Verification as Emptiness Checking 

A: a finite-state automaton F: a temporal-logic formula ⊧ 
? 

⇕ ⇕ 
⟨A⟩ = words accepted by A ⟨F⟩ = words satisfying F 

A ⊧ F    means:   “ every accepting run of A produces 
        a word that satisfies F ” 

 

A ⊧ F    iff:  w ∈ ⟨A⟩ implies w ∈ ⟨F⟩ 

        iff:  ⟨A⟩ ⊆ ⟨F⟩ 

   iff:  ⟨A⟩ ∩ ⟨F⟩c = ∅  

   iff:   ⟨A⟩ ∩ ⟨¬ F⟩ = ∅ 
⟨A⟩ 

⟨F⟩ 

⟨F⟩c 
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Automata-theoretic Model Checking 

A semantic view of the Model Checking 
problem: 

 Given: a finite-state automaton A 
     and a temporal-logic formula F 

 if ⟨A⟩ ∩ ⟨¬ F⟩ is empty then every run of A 
satisfies F 

 if ⟨A⟩ ∩ ⟨¬ F⟩ is not empty then some run of A 
does not satisfy F 

any member of the nonempty intersection 
⟨A⟩ ∩ ⟨¬ F⟩ is a counterexample 
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Automata-theoretic Model Checking 

How to check ⟨A⟩ ∩ ⟨¬ F⟩ = ∅ algorithmically (given A, F)? 

 
  Combination of three different algorithms: 

 

 LTL2FSA: given LTL formula F build automaton 

a(F) such that ⟨F⟩ = ⟨a(F)⟩ 

 

 FSA-Intersection: given automata A, B build 

automaton C such that ⟨A⟩ ∩ ⟨B⟩ = ⟨C⟩ 

 

 FSA-Emptiness: given automaton A check whether 

⟨A⟩ = ∅ is the case 
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LTL2FSA: from LTL to FSA 

Given an LTL formula F, it is always possible to 

build automatically an FSA a(F) that accepts 

precisely the same words that satisfy F. 

There are various algorithms to achieve this, with various degrees 

of sophistication and efficiency. Let us skip the details and just 

demonstrate the idea on an example. 
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LTL2FSA: from LTL to FSA 

 Always: 

 when start occurs: 

 stop will occur in the future and 

 cook holds until the occurrence of stop 

[] ( start ⇒ X (cook U stop) ) 
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LTL2FSA: from LTL to FSA 

 Always: 

 when start occurs: 

 stop will occur in the future and 

 cook holds until the occurrence of stop 

As long as start does not 

occur, everything's fine. 

[] ( start ⇒ X (cook U stop) ) 
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LTL2FSA: from LTL to FSA 

 Always: 

 when start occurs: 

 stop will occur in the future and 

 cook holds until the occurrence of stop 

As long as start does not 

occur, everything's fine. 

start occurs: move to a 

different (non-accepting) 

state and start monitoring. 

[] ( start ⇒ X (cook U stop) ) 
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LTL2FSA: from LTL to FSA 

 Always: 

 when start occurs: 

 stop will occur in the future and 

 cook holds until the occurrence of stop 

As long as start does not 

occur, everything's fine. 

start occurs: move to a 

different (non-accepting) 

state and start monitoring. 

stop must occur in the  

future for things to be fine. 

[] ( start ⇒ X (cook U stop) ) 
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LTL2FSA: from LTL to FSA 

 Always: 

 when start occurs: 

 stop will occur in the future and 

 cook holds until the occurrence of stop 

As long as start does not 

occur, everything's fine. 

start occurs: move to a 

different (non-accepting) 

state and start monitoring. 

stop must occur in the 

future for things to be fine. 

cook can occur 

before stop does. 

[] ( start ⇒ X (cook U stop) ) 
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LTL2FSA: from LTL to FSA 

 Always: 

 when start occurs: 

 stop will occur in the future and 

 cook holds until the occurrence of stop 

Corner cases: 

 which events satisfy ¬start? 

 what happens if neither cook nor stop occur 

in B2? 

[] ( start ⇒ X (cook U stop) ) 
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LTL2FSA: complete the transitions 

 Always: 

 when start occurs: 

 stop will occur in the future and 

 cook holds until the occurrence of stop 

 if this doesn't happen, fail 

[] ( start ⇒ X (cook U stop) ) 
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LTL2FSA: complement (if deterministic) 

 Always: 

 when start occurs: 

 stop will occur in the future and 

 cook holds until the occurrence of stop 

 if this doesn't happen, fail 

 ¬[] ( start ⇒ X (cook U stop) ) 

≡ 

  <> ( start ∧ X (¬cook R ¬stop)) 

 Sometimes: 

 start occurs and from that moment on: 

 cook becomes false no later than stop 

[] ( start ⇒ X (cook U stop) ) 
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Given automata A, B it is always possible to build 

automatically an FSA C that accepts precisely the words 

that both A and B accept. 

Automaton C represents all possible parallel runs of A and B where 

a word is accepted if and only if both A and B accept it. The 

(simple) construction is called “product automaton”. 

FSA-Intersection: running FSA in parallel 
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FSA-Intersection: running FSA in parallel 

x = 
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FSA-Intersection: running FSA in parallel 

x = 
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FSA-Intersection: running FSA in parallel 

x = 
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FSA-Intersection: running FSA in parallel 

x = 
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FSA-Intersection: running FSA in parallel 

x = 
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FSA-Intersection: running FSA in parallel 

x = 
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Def. Given FSA A=[Σ, SA, IA, ρA, FA] and B=[Σ, SB, IB, ρB, FB] 
  let     C ≜ A x B ≜ [ΣC, SC, IC, ρC, FC] be defined as: 

 ΣC ≜ Σ 

 SC ≜ SA  x SB 

 IC ≜ { (s, t) | s ∈ IA  and t ∈ IB } 

 ρC((s, t), σ) ≜ { (s', t') | s' ∈ ρA(s, σ)  and t' ∈ ρB(t, σ) }   

 FC ≜ { (s, t) | s ∈ FA  and t ∈ FB } 

Theorem. 

⟨A x B⟩ 

= 

⟨A⟩ ∩ ⟨B⟩ 

FSA-Intersection: running FSA in parallel 
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Given an automaton A it is always possible to check 
automatically if it accepts some word. 

It suffices to check whether any final state can be reached 

starting from any initial state. 

 

This amount to checking reachability on the graph representing the 

automaton: if a path is found, it corresponds to an accepted word; 

otherwise the automaton accepts an empty language. 

FSA-Emptiness: node reachability 
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It suffices to check whether any final state can be reached 

starting from any initial state. 

FSA-Emptiness: node reachability 

From the initial state B1 both 
accepting states can be reached. 
 
Correspondingly we find the accepted 
words: 

 start 
 start cook cook 
 start stop start 
 ... 

 
The accepted language is not empty. 
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Automata-theoretic Model Checking 

Automata-theoretic Model Checking Algorithm: 

 Given: a finite-state automaton A and a temporal-logic 

formula F 

– TL2FSA: build “tableau” automaton a(¬F) 

– FSA-Intersection: build “product” automaton A x a(¬F) 

– FSA-Emptiness: check whether A x a(¬F) = ∅ 

 If A x a(¬F) = ∅ then any run of A satisfies F 

 If A x a(¬F) ≠ ∅ then show a run of A where F does not 

hold 
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Automata-theoretic Model Checking 

⊧ [] ( start ⇒ X (cook U stop)) 

doesn't accept anything, hence 

we have verified: 
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Transition Systems vs. 

Finite State Automata 
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Transition Systems 

 A slight variant of the model-checking framework uses finite-state 

transition systems instead of finite-state automata to model the 

finite-state program/system. 

 Kripke structures is another name for finite-state transition 

systems. 

 A finite-state transition system is a finite-state automaton where 

propositions are associated to states rather than transition. 

 The finite-state transition system and finite-state automaton models 

are essentially equivalent and it is easy to switch from one to the 

other. 

 The finite-state transition system model is closer to the notion of 

finite-state program, but the automaton model is more amenable to 

variants and generalizations (see e.g., class on real-time model-

checking). 
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Automaton vs. Transition System 
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Automaton vs. Transition System 

[] ( start ⇒ X (cook U stop) ) 

[] (closed-cooking ⇒ 
   X (closed-cooking U closed-on)) 
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Transition System vs. Automaton 

<>[] C <>[] C 
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From Programs to Transition Systems 

n_to_n (n: INTEGER): INTEGER 
require 0 ≤ n ≤ 2 
local i: INTEGER 
do 
 from i := n ; Result := 1 
 until i = 0 
 loop 
  Result := Result * n 
  i := i – 1 
 end 
ensure Result = nn end 
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From Programs to Transition Systems 

forever (b: BOOLEAN) 
local old, new: BOOLEAN 
do 
 from old := b ; new := not b 
 until old = new 
 loop 
  old := new 
  new := not old 
 end 
end 
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Variants of the Model-Checking Algorithm 
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Variants of the Model-Checking Algorithm 

The basic model-checking algorithm: 

 TL2FSA: build automaton a(¬F) 

 FSA-Intersection: build automaton A x a(¬F) 

 FSA-Emptiness: check whether A x a(¬F) = ∅ 

 
can be refined into different variants: 
 

 Explicit-state model-checking 

 Symbolic (BDD-based) model-checking 

 Bounded (SAT-based) model-checking 

 
The variants differ in how they represent automata and 
formulae and how they analyze them. Hybrid approaches are 
also possible. 
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Explicit-state Model Checking 

Explicit-state model-checking represents automata 
explicitly as graphs: 

 TL2FSA: build automaton a(¬F) 

the automaton is represented as a graph 

 FSA-Intersection: build automaton A x a(¬F) 

the intersection is usually built on-the-fly while checking 
emptiness, because the product automaton can be large 

 FSA-Emptiness: check whether A x a(¬F) = ∅ 

a search on the expanded intersection graph looks for 
reachable accepting nodes 

 

SPIN is an example of explicit-state model checker. 



69 

Symbolic Model Checking 

Symbolic model-checking represents 

automata implicitly (symbolically) 

through their transition functions 

encoded as BDDs (Binary Decision 

Diagrams): 

 A BDD is an efficient representation of 

Boolean functions (i.e., truth tables) as 

acyclic graphs 

 Logic operations (e.g., conjunction, 

negation) can be performed efficiently 

directly on BDDs 
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Symbolic Model Checking 

Logic operations (e.g., conjunction, negation) can be 
performed efficiently directly on BDDs 

 TL2FSA: build automaton a(¬F) 

the transition function of the automaton is 
represented as a BDD 

 FSA-Intersection: build automaton A x a(¬F) 

the intersection is a BDD built by 
manipulating the two BDDs 

 FSA-Emptiness: check whether A x a(¬F) = ∅ 

emptiness checking is also performed directly 
on the BDD 

 it amount to reduction to a canonical form 
and then comparison with the canonical 
BDD for unsatisfiable Boolean functions 

 

SMV is an example of symbolic model checker. 
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Bounded model-checking considers all paths of bounded size on the 

automaton and represents them as a propositional formula. 

Propositional formulas are then checked for satisfiability with SAT-

solvers (i.e., automatic provers for propositional satisfiability). 

 

 The bound k of the path size is an additional input to the model-

checking problem with respect to standard model-checking. 

However, if the bound is “large enough” the problem is equivalent 

to standard model-checking. 

 Even if the encoding as a propositional formula is quite large, SAT-

solvers can handle huge (e.g., > 105 propositions) formulas 

efficiently. 

 

            NP-completeness should never scare the compiler writer. 

                                         -- Andrew W. Appel 

Bounded Model Checking 

verification tool 
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Bounded Model Checking 

 TL2FSA: build automaton a(¬F) 

the LTL formula is translated directly into a 
propositional formula p(¬F) 

 FSA-Intersection: build automaton A x a(¬F) 

the product of two propositional formulas is 
simply their conjunction p(A) ∧ p(¬F) 

 FSA-Emptiness: check whether A x a(¬F) = ∅ 

emptiness checking is equivalent to satisfiability 
checking of p(A) ∧ p(¬F) 

 

nuSMV and Zot are examples of bounded model checkers. 
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Variants of the Model-Checking Approach 
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Variants of the Model-Checking Problem 

The Model Checking problem: 

 Given: a finite-state automaton A and a temporal-logic formula F 

 Determine: if any run of A satisfies F or not 

if not, also provide a counterexample: a run of A where F 
does not hold 

The general problem can be refined into variants, according 

to the nature of A and F. 

 The same generic automata-theoretic solution 

 (TL2FSA -> Intersection -> Emptiness) 

applies to any of these variants 

(modulo some technicalities) 
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Variants of the Model-Checking Problem 

The general problem can be refined into variants, 

according to the nature of A and F. 

Classes of automata: 

 Finite State Automata 

(FSA) 

 Büchi Automata (BA) 

 Alternating Automata 

(AA) 

 ... 

 

Classes are not disjoint 

Classes of temporal logic: 

 Linear-time temporal logic 

 Branching-time temporal 

logic 

 Temporal logic with 

past operators 

 ... 

 

Classes are not disjoint 
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Automata Classes 

 Finite-state Automata (FSA) 

those presented in this lecture 

FSA runs correspond to finite words (words of finite length) 

 Büchi Automata (BA) 

named after Julius Büchi (Swiss logician, ETH graduate) 

BA runs correspond to infinite words (words of unbounded length) 

 this complicates the definitions of acceptance, product, and 
complement, as well as the algorithm for emptiness 

infinite words are needed to model: 

 reactive systems: ongoing interaction with environment 
e.g., control system, interactive protocol, etc. 

 liveness and fairness 
e.g., “process P will not starve” 

the most common presentation of linear-time model-checking uses BA 
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Automata Classes (cont'd) 

 Alternating Automata (AA) 

Alternation is a generalization of nondeterminism to universality: 

 existential nondeterminism: when multiple parallel runs are possible accept 
iff at least one of them is accepting 

 universal nondeterminism: when multiple parallel runs are possible accept 
iff all of them are accepting 

AA runs correspond to trees (of finite or infinite height) 

 a tree represents parallel runs over the same input word 

e.g.: an AA accepting ba(a|b)*c and a run on word “bac” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AA are also used as intermediate representation in the translation from LTL to 
BA 
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Temporal Logic Classes 

 Linear-time Temporal Logic (LTL) 

the one presented in this lecture 

LTL formulae express properties of linear sequences, that is 
words 

 linear: every element has only one possible successor 

 linear time: every step has only one possible “future” 

 Branching-time Temporal Logic 

includes path quantifiers in the syntax 

for example CTL (Computation Tree Logic): 
F  ::=  p  |  ¬ F  |  F ∧ G  |  ∃X F  |  ∀X F  |  F ∃U G |  F ∀U G 

branching-time formulae express properties of branching 
structures, that is trees 

 branching: an element can have multiple possible successors 

 branching time: a step can have many possible “futures” 

e.g.: ∃<> p: “there exists a path where p eventually holds” 
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Linear vs. Branching 

LTL and CTL have different strengths and 
weaknesses 

 Expressiveness: LTL and CTL 
have incomparable expressive power 

CTL formula ∀<>∀[] p: 
“p will stabilize at True within 
  a bounded amount of time” 
doesn't have an equivalent LTL formula 

LTL formula <>[] p: 
 “p is ultimately True in every computation” 
doesn't have an equivalent CTL formula 

see infinite computation tree 
(p holds precisely in green nodes) 
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Linear vs. Branching 

LTL and CTL have different strengths and weaknesses 

 Complexity: (checking whether A⊧F) 

CTL model-checking: O(|A|•|F|) 

LTL model-checking: O(|A|•2|F| )  and PSPACE-
complete 

However:  There is life after exponential explosion -- Moshe Vardi 

 |F| usually much smaller than |A| 

 CTL advantage vanishes when model-checking open systems 

 In practice similar performances with formulas that are 
expressible in both logics 

 Usability and intuitiveness: 

CTL quite unintuitive 

LTL intuitive but cannot express some interesting 
properties (beyond CTL ones) 
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Temporal Logic Classes (cont'd) 

 It is possible to add past temporal operators to 

temporal logics 

 

 Typically done with LTL giving LTL+P: 

Y F:   “yesterday F occurred” 

F S G:  “F holds since G” 

<> F:  “F held sometime in the past” 

... 
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Temporal Logic Classes (cont'd) 

 Past operators do not increase the expressive power of 

LTL: everything that can be expressed with LTL+P can also 

be expressed in LTL (without past operators) 

 Past operators increase the usability of LTL 

“Every alarm is due to a fault” 

 with past operators: 

   [] ( alarm ⇒ <>fault ) 

 without past operators: 

  ¬ ( ¬fault U (alarm ∧ ¬fault) ) 
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A Brief History of Model Checking 

Basic ingredients: 

 Kripke structures 

Kripke, circa 1963 

 Büchi automata 

Büchi, 1960 

 Temporal (“tense”) logic 

Prior, 1957 

Kamp, 1968 

Into computer science: 

 Using temporal logic to 
reason about programs 

Pnueli, 1977 

 Model checking 

Clarke & Emerson, 1981 

Queille & Sifakis, 1981 

 Automata-theoretic 
framework 

Vardi & Wolper, circa 
1986 

 Implementations 

SPIN, circa 1990 

SMV, circa 1990 

 Many extensions... 
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Everything's a Model-Checker 

 Model-checking techniques have gained much popularity, both 
in the research community and among practitioners 

 2007 ACM Turing award to Clarke, Emerson, and Sifakis for the 
invention of Model Checking 

 Hardware industry (e.g., Intel) uses model-checking techniques for 
production hardware 

 The model-checking framework has been modified and 
extended in many different directions 

 real-time and hybrid model-checking (see future class) 

 probabilistic model-checking 

 software model-checking (see future class) 

abstraction & refinement 

 infinite-state model-checking 

 Petri net model-checking 

 ... 
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Everything's a Model-Checker 

 Some extensions are so far-away from the 

original technique that “model-checking” is 

almost misnomer for them 

 However, the popularity of model checking has 

also loosened the meaning of the term, so that 

sometimes “model checking” is synonym with 

“algorithmic (automated) verification” 

 From an historic point of view, it is essentially true 

that model checking has been the first workable 

technique for automated verification 


