
Chair of Software Engineering

Software Verification

Lecture 11: Model Checking

Carlo A. Furia

2

Program Verification: the very idea

max (a, b: INTEGER): INTEGER is

 do

 if a > b then

 Result := a

 else

 Result := b

 end

 end

 require

 true

 ensure

 Result >= a

 Result >= b

P: a program S: a specification

Does P ⊧ S hold?

The Program Verification problem:

 Given: a program P and a specification S

 Determine: if every execution of P, for every value of input parameters,
satisfies S

3

Why is Verification Difficult?

P: a program S: a specification

Does TM(P) ⊧ F(S) hold?

The very nature of universal (Turing-complete) computation

entails the impossibility of deciding automatically the

program verification problem.

TM(P): a Turing machine F(S): a first-order formula

⇕ ⇕

UNDECIDABLE

4

Decidability vs. Expressiveness Trade-Off

If we restrict the expressiveness of:

the computational model

and/or

the specification language

the verification problem may become decidable

Def. Expressiveness: capability of describing
extensive classes of:

 computations

 properties

Does P ⊧ S hold?

5

Verification of Finite-state Programs

6

Verification of Finite-state Programs

Does P ⊧ S hold?

In Model Checking we typically assume:

finite-state programs

 every variable has finite domain

 bounded dynamic allocation

 bounded recursion

monadic first-order logic

 restricted first-order logic fragment where the ordering of
state values during a computation can be expressed

P: a finite-state program S: a monadic first-order specification

DECIDABLE

7

Verification of Finite-state Programs

Does P ⊧ S hold?

In Model Checking we typically assume:

finite-state programs

equivalently: finite-state automata of some kind

monadic first-order logic

equivalently: temporal logic of some kind

P: a program S: a specification

DECIDABLE

FSA(P): a finite-state automaton TL(S): a temporal logic formula

8

Model-checking in Pictures

is_locked: BOOLEAN

toggle_lock:

 do

 is_locked := not is_locked

 end

 ensure

 is_locked = not old is_locked

P: a program S: a specification

FSA(P): a finite-state automaton TL(S): a temporal logic formula

|= [] (toggle_lock X toggle_lock)

9

Finite-state Programs in the Real World

A few examples:

 Behavior of hardware

inherently finite-state

 Concurrency aspects

access to critical regions, scheduling of processes, ...

 Security aspects

access policies, protocols, ...

 Reactive systems

ongoing interaction between software and physical environment

Can finite-state models capture

significant aspects of real programs? Yes!

10

Is the Abstraction Correct?

How to guarantee that the finite-state abstraction
of an infinite-state program is accurate?

 In hardware verification, the real system is finite-
state, so no abstraction is needed

 The finite-state model can be built and verified before
the real implementation is produced

A formal high-level model: increased confidence in
some key features of the system under development

Model-driven development: the implementation is
derived (almost) automatically from the high-level
finite-state model

11

Is the Abstraction Correct?

How to guarantee that the finite-state

abstraction of an infinite-state program is

accurate?

 Software model-checking: the abstraction is built

automatically and refined iteratively until we can

guarantee that it is an accurate model of the real

implementation for the properties under

verification

12

The Model-Checking Paradigm

13

The Model-Checking Paradigm

A: a finite-state automaton F: a temporal-logic formula

⊧

The Model Checking problem:

 Given: a finite-state automaton A and
 a temporal-logic formula F

 Determine: if every run of A satisfies F or not

if not, provide a counterexample:
a run of A where F does not hold

[] (toggle_lock ⇔ X toggle_lock)

14

The Model-Checking Paradigm

A: a finite-state automaton F: a temporal-logic formula

⊧

Different choices are possible for the kinds

of automata and of formulae.

 We now describe more details for

linear-time model-checking where:

A is a (nondeterministic) finite state automaton

F is a propositional linear temporal logic formula

[] (toggle_lock ⇔ X toggle_lock)

15

Finite State Automata: Syntax

16

Finite State Automata: Syntax

Def. Nondeterministic Finite State Automaton (FSA):

 a tuple [Σ, S, I, ρ, F]:

 Σ: finite nonempty (input) alphabet

 S: finite nonempty set of states

 I ⊆ S: set of initial states

 F ⊆ S: set of accepting states

 ρ: S x Σ → 2S: transition function

17

Finite State Automata: Syntax

Def. Nondeterministic Finite State Automaton (FSA):
 a tuple [Σ, S, I, ρ, F]:

 Σ: finite nonempty (input) alphabet

 S: finite nonempty set of states

 I ⊆ S: set of initial states

 F ⊆ S: set of accepting states

 ρ: S x Σ → 2S: transition function

 Σ = { pull, push, turn_on, turn_off, start,
 stop, cook }

 S = { closed-off, open-off, closed-on,
 open-on, closed-cooking }

 I = { closed-off }
 F = { closed-off }
 ρ(closed-off, turn_on) = { closed-on }
 ρ(..., ...) = ...

 Deterministic, in this example (“microwave oven”)

18

Finite State Automata: Semantics

Accepting run
r = closed-off closed-on closed-cooking
 closed-cooking closed-on closed-off

over input word
w = turn_on start cook stop turn_off

Rejecting run
r' =closed-off open-off closed-off
 closed-on

over input word
w' = pull push turn_on

19

Finite State Automata: Semantics

Def. An accepting run of an FSA A=[Σ, S, I, ρ, F]

 over input word w = w(1) w(2) ... w(n) ∈ Σ*

 is a sequence r = r(0) r(1) r(2) ... r(n)∈ S*

 of states such that:

it starts from an initial state: r(0) ∈ I

it ends in an accepting state: r(n) ∈ F

it respects the transition function:

 r(i+1) ∈ ρ(r(i), w(i)) for all 0 ≤ i < n

20

Finite State Automata: Semantics

Def. An accepting run of an FSA A=[Σ, S, I, ρ, F]
over input word w = w(1) w(2) ... w(n) ∈ Σ*
is a sequence r = r(0) r(1) r(2) ... r(n)∈ S*
of states such that:

it starts from an initial state: r(0) ∈ I

it ends in an accepting state: r(n) ∈ F

it respects the transition function:
 r(i+1) ∈ ρ(r(i), w(i)) for all 0 ≤ i < n

 Accepting run

r = closed-off closed-on closed-cooking

 closed-cooking closed-on closed-off

 Over input word

w = turn_on start cook stop turn_off

 In practice: any path on the directed graph

that starts in an initial state and ends in an

accepting state

21

Finite State Automata: Semantics

Def. Any FSA A=[Σ, S, I, ρ, F] defines

 a set of input words ⟨A⟩:

 ⟨A⟩ ≜ { w ∈ Σ* | there is an

 accepting run of A

 over w }

 ⟨A⟩ is called the language of A

22

Finite State Automata: Semantics

Def. Any FSA A=[Σ, S, I, ρ, F] defines
 a set of input words ⟨A⟩:
 ⟨A⟩ ≜ { w ∈ Σ* | there is an
 accepting run of A
 over w }

 ⟨A⟩ is called the language of A

With regular expressions:

⟨A⟩ = ((pull push)* (turn_on

 (pull push)*

 (start cook* stop)*

 (pull push)*

 turn_off)*)*

23

Linear Temporal Logic: Syntax

Def. Propositional Linear Temporal Logic (LTL) formulae

 are defined by the grammar:

 F ::= p | ¬ F | F ∧ G | X F | F U G

with p ∈ P any atomic proposition from a fixed set P.

Propositional connectives:

 not: ¬ F

 and: F ∧ G

 or: F ∨ G ≜ ¬ (¬F ∧ ¬G)

 implies: F ⇒ G ≜ ¬F ∨ G

 iff: F ⇔ G ≜ (F ⇒ G) ∧ (G ⇒ F)

Temporal (modal) operators:

 next: X F

 until: F U G

 release: F R G ≜ ¬ (¬F U ¬G)

 eventually: <> F ≜ True U F

 always: [] F ≜ ¬ <> ¬F

24

Linear Temporal Logic: Syntax

Def. Propositional Linear Temporal Logic (LTL) formulae

 are defined by the grammar:

 F ::= p | ¬ F | F ∧ G | X F | F U G

with p ∈ P any atomic proposition from a fixed set P.

[] (start ⇒ X (cook U stop))

25

Linear Temporal Logic: Semantics

 [] (start)

 X (cook)

 [] (X cook)

 cook ∧ [] (X cook)

 stop ∧ start

26

Linear Temporal Logic: Semantics

 [] (start)

start, start, start, ...

 X (cook)

 [] (X cook)

 cook ∧ [] (X cook)

 stop ∧ start

27

Linear Temporal Logic: Semantics

 [] (start)

start, start, start, ...

 X (cook)

[any], cook, [any], ...

 [] (X cook)

 cook ∧ [] (X cook)

 stop ∧ start

28

Linear Temporal Logic: Semantics

 [] (start)

start, start, start, ...

 X (cook)

[any], cook, [any], ...

 [] (X cook)

[any], cook, cook, cook,

...

 cook ∧ [] (X cook)

cook, cook, cook, cook,

...

 stop ∧ start

29

Linear Temporal Logic: Semantics

 [] (start)

start, start, start, ...

 X (cook)

[any], cook, [any], ...

 [] (X cook)

[any], cook, cook, cook,

...

 cook ∧ [] (X cook)

cook, cook, cook, cook,

...

 stop ∧ start

Ø

30

Linear Temporal Logic: Semantics

Def. A word w = w(1) w(2) ... w(n) ∈ P*
 satisfies an LTL formula F
 at position 1 ≤ i ≤ n, denoted w, i ⊧ F,
 under the following conditions:

w, i ⊧ p iff p = w(i)

w, i ⊧ ¬ F iff w, i ⊧ F does not hold

w, i ⊧ F ∧ G iff both w, i ⊧ F and w, i ⊧ G hold

w, i ⊧ X F iff i < n and w, i+1 ⊧ F

 i.e., F holds in the next step

w, i ⊧ F U G iff for some i ≤ j ≤ n it is: w, j ⊧ G
 and for all i ≤ k < j it is w, k ⊧ F

 i.e., F holds until G will hold

31

Linear Temporal Logic: Semantics

For derived operators:

w, i ⊧ <> F iff for some i ≤ j ≤ n it is: w, j ⊧ F

 i.e., F holds eventually (in the future)

w, i ⊧ [] F iff for all i ≤ j ≤ n it is: w, j ⊧ F

 i.e., F holds always (in the future)

32

Linear Temporal Logic: Semantics

Def. Satisfaction:
 w ⊧ F ≜ w, 1 ⊧ F

i.e., word w satisfies formula F initially

Def. Any LTL formula F defines a set of words ⟨F⟩:

 ⟨F⟩ ≜ { w ∈ P* | w ⊧ F }

 ⟨F⟩ is called the language of F

33

Linear Temporal Logic: Semantics

Def. Any LTL formula F defines a set of words ⟨F⟩:

 ⟨F⟩ ≜ { w ∈ P* | w ⊧ F }

 ⟨F⟩ is called the language of F

⟨ [] start ⟩ = start, start, start, ...

34

Verification as Emptiness Checking

A: a finite-state automaton F: a temporal-logic formula ⊧

The Model Checking problem:

 Given: a finite-state automaton A and a temporal-logic
formula F

 Determine: if every run of A satisfies F or not

if not, also provide a counterexample:
a run of A where F does not hold

?

⇕ ⇕
⟨A⟩ = words accepted by A ⟨F⟩ = words satisfying F

35

Verification as Emptiness Checking

A: a finite-state automaton F: a temporal-logic formula ⊧
?

⇕ ⇕
⟨A⟩ = words accepted by A ⟨F⟩ = words satisfying F

A ⊧ F means: “ every accepting run of A produces
 a word that satisfies F ”

A ⊧ F iff: w ∈ ⟨A⟩ implies w ∈ ⟨F⟩

 iff: ⟨A⟩ ⊆ ⟨F⟩

 iff: ⟨A⟩ ∩ ⟨F⟩c = ∅

 iff: ⟨A⟩ ∩ ⟨¬ F⟩ = ∅
⟨A⟩

⟨F⟩

⟨F⟩c

36

Automata-theoretic Model Checking

A semantic view of the Model Checking
problem:

 Given: a finite-state automaton A
 and a temporal-logic formula F

 if ⟨A⟩ ∩ ⟨¬ F⟩ is empty then every run of A
satisfies F

 if ⟨A⟩ ∩ ⟨¬ F⟩ is not empty then some run of A
does not satisfy F

any member of the nonempty intersection
⟨A⟩ ∩ ⟨¬ F⟩ is a counterexample

37

Automata-theoretic Model Checking

How to check ⟨A⟩ ∩ ⟨¬ F⟩ = ∅ algorithmically (given A, F)?

 Combination of three different algorithms:

 LTL2FSA: given LTL formula F build automaton

a(F) such that ⟨F⟩ = ⟨a(F)⟩

 FSA-Intersection: given automata A, B build

automaton C such that ⟨A⟩ ∩ ⟨B⟩ = ⟨C⟩

 FSA-Emptiness: given automaton A check whether

⟨A⟩ = ∅ is the case

38

LTL2FSA: from LTL to FSA

Given an LTL formula F, it is always possible to

build automatically an FSA a(F) that accepts

precisely the same words that satisfy F.

There are various algorithms to achieve this, with various degrees

of sophistication and efficiency. Let us skip the details and just

demonstrate the idea on an example.

39

LTL2FSA: from LTL to FSA

 Always:

 when start occurs:

 stop will occur in the future and

 cook holds until the occurrence of stop

[] (start ⇒ X (cook U stop))

40

LTL2FSA: from LTL to FSA

 Always:

 when start occurs:

 stop will occur in the future and

 cook holds until the occurrence of stop

As long as start does not

occur, everything's fine.

[] (start ⇒ X (cook U stop))

41

LTL2FSA: from LTL to FSA

 Always:

 when start occurs:

 stop will occur in the future and

 cook holds until the occurrence of stop

As long as start does not

occur, everything's fine.

start occurs: move to a

different (non-accepting)

state and start monitoring.

[] (start ⇒ X (cook U stop))

42

LTL2FSA: from LTL to FSA

 Always:

 when start occurs:

 stop will occur in the future and

 cook holds until the occurrence of stop

As long as start does not

occur, everything's fine.

start occurs: move to a

different (non-accepting)

state and start monitoring.

stop must occur in the

future for things to be fine.

[] (start ⇒ X (cook U stop))

43

LTL2FSA: from LTL to FSA

 Always:

 when start occurs:

 stop will occur in the future and

 cook holds until the occurrence of stop

As long as start does not

occur, everything's fine.

start occurs: move to a

different (non-accepting)

state and start monitoring.

stop must occur in the

future for things to be fine.

cook can occur

before stop does.

[] (start ⇒ X (cook U stop))

44

LTL2FSA: from LTL to FSA

 Always:

 when start occurs:

 stop will occur in the future and

 cook holds until the occurrence of stop

Corner cases:

 which events satisfy ¬start?

 what happens if neither cook nor stop occur

in B2?

[] (start ⇒ X (cook U stop))

45

LTL2FSA: complete the transitions

 Always:

 when start occurs:

 stop will occur in the future and

 cook holds until the occurrence of stop

 if this doesn't happen, fail

[] (start ⇒ X (cook U stop))

46

LTL2FSA: complement (if deterministic)

 Always:

 when start occurs:

 stop will occur in the future and

 cook holds until the occurrence of stop

 if this doesn't happen, fail

 ¬[] (start ⇒ X (cook U stop))

≡

 <> (start ∧ X (¬cook R ¬stop))

 Sometimes:

 start occurs and from that moment on:

 cook becomes false no later than stop

[] (start ⇒ X (cook U stop))

47

Given automata A, B it is always possible to build

automatically an FSA C that accepts precisely the words

that both A and B accept.

Automaton C represents all possible parallel runs of A and B where

a word is accepted if and only if both A and B accept it. The

(simple) construction is called “product automaton”.

FSA-Intersection: running FSA in parallel

48

FSA-Intersection: running FSA in parallel

x =

49

FSA-Intersection: running FSA in parallel

x =

50

FSA-Intersection: running FSA in parallel

x =

51

FSA-Intersection: running FSA in parallel

x =

52

FSA-Intersection: running FSA in parallel

x =

53

FSA-Intersection: running FSA in parallel

x =

54

Def. Given FSA A=[Σ, SA, IA, ρA, FA] and B=[Σ, SB, IB, ρB, FB]
 let C ≜ A x B ≜ [ΣC, SC, IC, ρC, FC] be defined as:

 ΣC ≜ Σ

 SC ≜ SA x SB

 IC ≜ { (s, t) | s ∈ IA and t ∈ IB }

 ρC((s, t), σ) ≜ { (s', t') | s' ∈ ρA(s, σ) and t' ∈ ρB(t, σ) }

 FC ≜ { (s, t) | s ∈ FA and t ∈ FB }

Theorem.

⟨A x B⟩

=

⟨A⟩ ∩ ⟨B⟩

FSA-Intersection: running FSA in parallel

55

Given an automaton A it is always possible to check
automatically if it accepts some word.

It suffices to check whether any final state can be reached

starting from any initial state.

This amount to checking reachability on the graph representing the

automaton: if a path is found, it corresponds to an accepted word;

otherwise the automaton accepts an empty language.

FSA-Emptiness: node reachability

56

It suffices to check whether any final state can be reached

starting from any initial state.

FSA-Emptiness: node reachability

From the initial state B1 both
accepting states can be reached.

Correspondingly we find the accepted
words:

 start
 start cook cook
 start stop start
 ...

The accepted language is not empty.

57

Automata-theoretic Model Checking

Automata-theoretic Model Checking Algorithm:

 Given: a finite-state automaton A and a temporal-logic

formula F

– TL2FSA: build “tableau” automaton a(¬F)

– FSA-Intersection: build “product” automaton A x a(¬F)

– FSA-Emptiness: check whether A x a(¬F) = ∅

 If A x a(¬F) = ∅ then any run of A satisfies F

 If A x a(¬F) ≠ ∅ then show a run of A where F does not

hold

58

Automata-theoretic Model Checking

⊧ [] (start ⇒ X (cook U stop))

doesn't accept anything, hence

we have verified:

59

Transition Systems vs.

Finite State Automata

60

Transition Systems

 A slight variant of the model-checking framework uses finite-state

transition systems instead of finite-state automata to model the

finite-state program/system.

 Kripke structures is another name for finite-state transition

systems.

 A finite-state transition system is a finite-state automaton where

propositions are associated to states rather than transition.

 The finite-state transition system and finite-state automaton models

are essentially equivalent and it is easy to switch from one to the

other.

 The finite-state transition system model is closer to the notion of

finite-state program, but the automaton model is more amenable to

variants and generalizations (see e.g., class on real-time model-

checking).

61

Automaton vs. Transition System

62

Automaton vs. Transition System

[] (start ⇒ X (cook U stop))

[] (closed-cooking ⇒
 X (closed-cooking U closed-on))

63

Transition System vs. Automaton

<>[] C <>[] C

64

From Programs to Transition Systems

n_to_n (n: INTEGER): INTEGER
require 0 ≤ n ≤ 2
local i: INTEGER
do
 from i := n ; Result := 1
 until i = 0
 loop
 Result := Result * n
 i := i – 1
 end
ensure Result = nn end

65

From Programs to Transition Systems

forever (b: BOOLEAN)
local old, new: BOOLEAN
do
 from old := b ; new := not b
 until old = new
 loop
 old := new
 new := not old
 end
end

66

Variants of the Model-Checking Algorithm

67

Variants of the Model-Checking Algorithm

The basic model-checking algorithm:

 TL2FSA: build automaton a(¬F)

 FSA-Intersection: build automaton A x a(¬F)

 FSA-Emptiness: check whether A x a(¬F) = ∅

can be refined into different variants:

 Explicit-state model-checking

 Symbolic (BDD-based) model-checking

 Bounded (SAT-based) model-checking

The variants differ in how they represent automata and
formulae and how they analyze them. Hybrid approaches are
also possible.

68

Explicit-state Model Checking

Explicit-state model-checking represents automata
explicitly as graphs:

 TL2FSA: build automaton a(¬F)

the automaton is represented as a graph

 FSA-Intersection: build automaton A x a(¬F)

the intersection is usually built on-the-fly while checking
emptiness, because the product automaton can be large

 FSA-Emptiness: check whether A x a(¬F) = ∅

a search on the expanded intersection graph looks for
reachable accepting nodes

SPIN is an example of explicit-state model checker.

69

Symbolic Model Checking

Symbolic model-checking represents

automata implicitly (symbolically)

through their transition functions

encoded as BDDs (Binary Decision

Diagrams):

 A BDD is an efficient representation of

Boolean functions (i.e., truth tables) as

acyclic graphs

 Logic operations (e.g., conjunction,

negation) can be performed efficiently

directly on BDDs

70

Symbolic Model Checking

Logic operations (e.g., conjunction, negation) can be
performed efficiently directly on BDDs

 TL2FSA: build automaton a(¬F)

the transition function of the automaton is
represented as a BDD

 FSA-Intersection: build automaton A x a(¬F)

the intersection is a BDD built by
manipulating the two BDDs

 FSA-Emptiness: check whether A x a(¬F) = ∅

emptiness checking is also performed directly
on the BDD

 it amount to reduction to a canonical form
and then comparison with the canonical
BDD for unsatisfiable Boolean functions

SMV is an example of symbolic model checker.

71

Bounded model-checking considers all paths of bounded size on the

automaton and represents them as a propositional formula.

Propositional formulas are then checked for satisfiability with SAT-

solvers (i.e., automatic provers for propositional satisfiability).

 The bound k of the path size is an additional input to the model-

checking problem with respect to standard model-checking.

However, if the bound is “large enough” the problem is equivalent

to standard model-checking.

 Even if the encoding as a propositional formula is quite large, SAT-

solvers can handle huge (e.g., > 105 propositions) formulas

efficiently.

 NP-completeness should never scare the compiler writer.

 -- Andrew W. Appel

Bounded Model Checking

verification tool

72

Bounded Model Checking

 TL2FSA: build automaton a(¬F)

the LTL formula is translated directly into a
propositional formula p(¬F)

 FSA-Intersection: build automaton A x a(¬F)

the product of two propositional formulas is
simply their conjunction p(A) ∧ p(¬F)

 FSA-Emptiness: check whether A x a(¬F) = ∅

emptiness checking is equivalent to satisfiability
checking of p(A) ∧ p(¬F)

nuSMV and Zot are examples of bounded model checkers.

73

Variants of the Model-Checking Approach

74

Variants of the Model-Checking Problem

The Model Checking problem:

 Given: a finite-state automaton A and a temporal-logic formula F

 Determine: if any run of A satisfies F or not

if not, also provide a counterexample: a run of A where F
does not hold

The general problem can be refined into variants, according

to the nature of A and F.

 The same generic automata-theoretic solution

 (TL2FSA -> Intersection -> Emptiness)

applies to any of these variants

(modulo some technicalities)

75

Variants of the Model-Checking Problem

The general problem can be refined into variants,

according to the nature of A and F.

Classes of automata:

 Finite State Automata

(FSA)

 Büchi Automata (BA)

 Alternating Automata

(AA)

 ...

Classes are not disjoint

Classes of temporal logic:

 Linear-time temporal logic

 Branching-time temporal

logic

 Temporal logic with

past operators

 ...

Classes are not disjoint

76

Automata Classes

 Finite-state Automata (FSA)

those presented in this lecture

FSA runs correspond to finite words (words of finite length)

 Büchi Automata (BA)

named after Julius Büchi (Swiss logician, ETH graduate)

BA runs correspond to infinite words (words of unbounded length)

 this complicates the definitions of acceptance, product, and
complement, as well as the algorithm for emptiness

infinite words are needed to model:

 reactive systems: ongoing interaction with environment
e.g., control system, interactive protocol, etc.

 liveness and fairness
e.g., “process P will not starve”

the most common presentation of linear-time model-checking uses BA

77

Automata Classes (cont'd)

 Alternating Automata (AA)

Alternation is a generalization of nondeterminism to universality:

 existential nondeterminism: when multiple parallel runs are possible accept
iff at least one of them is accepting

 universal nondeterminism: when multiple parallel runs are possible accept
iff all of them are accepting

AA runs correspond to trees (of finite or infinite height)

 a tree represents parallel runs over the same input word

e.g.: an AA accepting ba(a|b)*c and a run on word “bac”

AA are also used as intermediate representation in the translation from LTL to
BA

78

Temporal Logic Classes

 Linear-time Temporal Logic (LTL)

the one presented in this lecture

LTL formulae express properties of linear sequences, that is
words

 linear: every element has only one possible successor

 linear time: every step has only one possible “future”

 Branching-time Temporal Logic

includes path quantifiers in the syntax

for example CTL (Computation Tree Logic):
F ::= p | ¬ F | F ∧ G | ∃X F | ∀X F | F ∃U G | F ∀U G

branching-time formulae express properties of branching
structures, that is trees

 branching: an element can have multiple possible successors

 branching time: a step can have many possible “futures”

e.g.: ∃<> p: “there exists a path where p eventually holds”

79

Linear vs. Branching

LTL and CTL have different strengths and
weaknesses

 Expressiveness: LTL and CTL
have incomparable expressive power

CTL formula ∀<>∀[] p:
“p will stabilize at True within
 a bounded amount of time”
doesn't have an equivalent LTL formula

LTL formula <>[] p:
 “p is ultimately True in every computation”
doesn't have an equivalent CTL formula

see infinite computation tree
(p holds precisely in green nodes)

80

Linear vs. Branching

LTL and CTL have different strengths and weaknesses

 Complexity: (checking whether A⊧F)

CTL model-checking: O(|A|•|F|)

LTL model-checking: O(|A|•2|F|) and PSPACE-
complete

However: There is life after exponential explosion -- Moshe Vardi

 |F| usually much smaller than |A|

 CTL advantage vanishes when model-checking open systems

 In practice similar performances with formulas that are
expressible in both logics

 Usability and intuitiveness:

CTL quite unintuitive

LTL intuitive but cannot express some interesting
properties (beyond CTL ones)

81

Temporal Logic Classes (cont'd)

 It is possible to add past temporal operators to

temporal logics

 Typically done with LTL giving LTL+P:

Y F: “yesterday F occurred”

F S G: “F holds since G”

<> F: “F held sometime in the past”

...

82

Temporal Logic Classes (cont'd)

 Past operators do not increase the expressive power of

LTL: everything that can be expressed with LTL+P can also

be expressed in LTL (without past operators)

 Past operators increase the usability of LTL

“Every alarm is due to a fault”

 with past operators:

 [] (alarm ⇒ <>fault)

 without past operators:

 ¬ (¬fault U (alarm ∧ ¬fault))

83

A Brief History of Model Checking

Basic ingredients:

 Kripke structures

Kripke, circa 1963

 Büchi automata

Büchi, 1960

 Temporal (“tense”) logic

Prior, 1957

Kamp, 1968

Into computer science:

 Using temporal logic to
reason about programs

Pnueli, 1977

 Model checking

Clarke & Emerson, 1981

Queille & Sifakis, 1981

 Automata-theoretic
framework

Vardi & Wolper, circa
1986

 Implementations

SPIN, circa 1990

SMV, circa 1990

 Many extensions...

84

Everything's a Model-Checker

 Model-checking techniques have gained much popularity, both
in the research community and among practitioners

 2007 ACM Turing award to Clarke, Emerson, and Sifakis for the
invention of Model Checking

 Hardware industry (e.g., Intel) uses model-checking techniques for
production hardware

 The model-checking framework has been modified and
extended in many different directions

 real-time and hybrid model-checking (see future class)

 probabilistic model-checking

 software model-checking (see future class)

abstraction & refinement

 infinite-state model-checking

 Petri net model-checking

 ...

85

Everything's a Model-Checker

 Some extensions are so far-away from the

original technique that “model-checking” is

almost misnomer for them

 However, the popularity of model checking has

also loosened the meaning of the term, so that

sometimes “model checking” is synonym with

“algorithmic (automated) verification”

 From an historic point of view, it is essentially true

that model checking has been the first workable

technique for automated verification

