
Chair of Software Engineering 

Software Verification 

 

Lecture 12: 

Software Model Checking 

 

Carlo A. Furia 



2 

Program Verification: the very idea 

max (a, b: INTEGER): INTEGER is 

 do 

  if a > b then 

   Result := a 

  else 

   Result := b 

  end 

 end 

 

 require 

  True 

 

 ensure 

  Result >= a 

  Result >= b 

 

P: a program S: a specification 

Does            P ⊧ S               hold? 

The Program Verification problem: 

 Given: a program P and a specification S 

 Determine: if every execution of P, for any value of input arguments, 
satisfies S 



3 

Verification of Finite-State Program 

P: a program S: a specification 

Does            P ⊧ S               hold? 

The Program Verification problem is decidable if P is 
finite-state 

With Model-checking techniques 
 

But real programs are not finite-state 

• arbitrarily complex inputs 

• dynamic memory allocation 

• ... 



4 

Software Model-Checking: the Very Idea 

The term Software Model-Checking denotes 

techniques to automatically verify real 

programs based on finite-state models of them. 

It is a convergence of verification techniques 

developed during the late 1990's. 

 

The term “software model checker” is probably a 

misnomer [...] We retain the term solely to reflect 

historical development. 
--  R. Jhala & R. Majumdar: “Software Model Checking” 

 ACM CSUR, October 2009 

 



5 

Abstraction/Refinement Software M.-C. 

Software Model-Checking based on CEGAR: 

Counterexample-Guided Abstraction/Refinement  

 A popular framework for software model-

checking 

 

Integrates three fundamental techniques: 

 Predicate abstraction of programs 

 Detection of spurious counterexamples 

 Refinement by predicate discovery 



6 

The Big Picture 

 



CEGAR Software Model Checking 

CONCRETE 

PROGRAM 
ABSTRACT PROGRAM 

(increasing) abstraction 



CEGAR Software Model Checking 

CONCRETE 

PROGRAM 
ABSTRACT PROGRAM 

(increasing) abstraction 

PROVE correct 
(model-check) 

TEST 
(execute) 



CEGAR Software Model Checking 

CONCRETE 

PROGRAM 
ABSTRACT PROGRAM 

(increasing) abstraction 

PROVE correct 
(model-check) 

TEST 
(execute) 

REFINE 



CEGAR Software Model Checking 

ABSTRACT PROGRAM 

(increasing) abstraction 

MODEL CHECK 

CONCRETE 

PROGRAM 



CEGAR Software Model Checking 

ABSTRACT PROGRAM 

(increasing) abstraction 

MODEL CHECK 

CONCRETE 

PROGRAM 

verification fails: COUNTEREXAMPLE 

execute COUNTEREXAMPLE 

COUNTEREXAMPLE not executable 



CEGAR Software Model Checking 

ABSTRACT PROGRAM 

(increasing) abstraction 

MODEL CHECK 

CONCRETE 

PROGRAM 

verification fails: COUNTEREXAMPLE 

execute COUNTEREXAMPLE 

COUNTEREXAMPLE not executable 

REFINE abstraction 



CEGAR Software Model Checking 

(increasing) abstraction 

CONCRETE 

PROGRAM 

REFINE abstraction 

REFINE 

ABSTRACT PROGRAM 



CEGAR Software Model Checking 

(increasing) abstraction 

CONCRETE 

PROGRAM 

START OVER with new abstraction 

ABSTRACT PROGRAM 



Outcome 1: Successful Verification 

CONCRETE 

PROGRAM 
ABSTRACT PROGRAM 

proof SUCCEEDS: PROGRAM is VERIFIED 

MODEL CHECK 



Outcome 2: Real Bug Found 

MODEL CHECK 

CONCRETE 

PROGRAM 
ABSTRACT PROGRAM 

COUNTEREXAMPLE 
executable: REAL BUG 

verification fails: COUNTEREXAMPLE 

execute COUNTEREXAMPLE 



Outcome 3: Loop Forever 

ABSTRACT PROGRAM 

MODEL CHECK 

CONCRETE 

PROGRAM 

verification fails: COUNTEREXAMPLE 

execute COUNTEREXAMPLE 

COUNTEREXAMPLE not executable 

REFINE abstraction 



CEGAR Software Model-Checking 

Integrates three fundamental techniques: 

 Predicate abstraction of programs 

 Detection of spurious counterexamples 

 Refinement by predicate discovery 

 

Let us now present these techniques in some 

detail. 



Technical premises: 

weakest preconditions of 

assertion instructions 

and parallel conditional assignments 

 



Assertions and assumptions 

For a straightforward presentation of the 
techniques, we introduce two distinct forms of 
annotations in the programming language. 

 Assumptions describe postulated properties of every 
run reaching the annotation. 
    assume exp end 

A run reaching an assumption that evaluates to False is 
infeasible. 

 Assertions describe properties that every run 
continuing after the annotation is required to have. 
      assert exp end 

A run reaching an assertion that evaluates to False terminates 
with an error. 



Assertions and assumptions 

The weakest precondition of assertions and 
assumptions is computed with the following rules. 

 { exp  Q } assume exp end { Q } 

 { exp  Q } assert exp end { Q } 
 

We will not use annotations directly in source 
programs, but only to build transformations into 
predicate abstractions and to describe program 
runs. 

Sometimes, we will denote assertions or assumptions 
with brackets: 
          [exp] 



Parallel assignments 

For a straightforward presentation of the 

techniques in the following, we also introduce 

the parallel assignment: 

v1, v2, ..., vm := e1, e2, ..., em 

 First, all the expressions e1, e2, ..., em are evaluated on 

the pre state. 

 Then, the computed values are orderly assigned to the 

variables v1, v2, ..., vm. 

Example: 

 { x = 3, y = 1 }   x := y ; y := x    { x =   , y =   } 

 { x = 3, y = 1 }   x, y := y, x    { x =   , y =   } 



Parallel assignments 

For a straightforward presentation of the 

techniques, we also introduce the parallel 

assignment: 

v1, v2, ..., vm := e1, e2, ..., em 

 First, all the expressions e1, e2, ..., em are evaluated on 

the pre state. 

 Then, the computed values are orderly assigned to the 

variables v1, v2, ..., vm. 

Example: 

 { x = 3, y = 1 }   x := y ; y := x    { x = 1 , y = 1 } 

 { x = 3, y = 1 }   x, y := y, x    { x = 1 , y = 3 } 



Parallel conditional assignment 

 The parallel assignment and the conditional can 
be combined into a parallel conditional 
assignment:  

if c1
+ then v1 := e1

+ elseif c1
- then v1 := e1

- else v1 := e1
? end 

if c2
+ then v2 := e2

+ elseif c2
- then v2 := e2

- else v2 := e2
? end 

... 

if cm
+ then vm := em

+ elseif cm
- then vm := em

- else vm := em
? end 

 First, evaluate all the conditions (well-formedness requires 
ck

+ and ck
- to be mutually exclusive, for all k). 

 Then, evaluate the expressions. 

 Finally, perform the assignments. 



25 

Predicate Abstraction 

 



26 

Abstraction 

Abstraction is a pervasive idea in computer science. It has to do with 
modeling some crucial (behavioral) aspects while ignoring some other, 
less relevant, ones. 
 

 Semantics of a program P:  a set of runs ⟨P⟩ 

set of all runs of P for any choice of input arguments 

a run is completely described by a list of program 
locations that gets executed in order, together with the 
value that each variables has at the location. 

 Abstraction of a program P:   another program A_P 

A_P's semantics is “similar” to P's 

 define some mapping between the runs of A_P and P 

A_P is more amenable to analysis than P 



27 

Over- and Under-Approximation 

Two main kinds of abstraction: 

 over-approximation: program AO_P 

AO_P allows “more runs” than P 

for every r  ⟨P⟩ there exists a r'  ⟨AO_P⟩ 

intuitively: ⟨P⟩  ⟨AO_P⟩ 

AO_P allows some runs that are “spurious” 
(also “infeasible”) for P 

 under-approximation: program AU_P 

AU_P allows “fewer runs” than P 

for every r  ⟨AU_P⟩ there exists a r'  ⟨P⟩ 

intuitively: ⟨AU_P⟩  ⟨P⟩ 

AU_P disallows some runs that are “legal” 
(also “feasible”) for P 



28 

Over- and Under-Approximation: Example 

max (x, y: INTEGER): INTEGER 
do 

if x > y 

 then Result := x 

 else Result := y 

end 

end 
AU_max (x, y: INTEGER): INTEGER 

do 

if x > y 
 then Result := x 
 else assume False end 
end 

end 

AO_max (x, y: INTEGER): INTEGER 
do 

if x > y 

 then Result := x 

 else Result := y 

end 

if ? then Result := 3 end 

end 



29 

Predicate Abstraction 

In predicate abstraction, the abstraction A_P of a program P uses only Boolean 
variables called “predicates”. 

 Each predicate captures a significant fact about the state of P 

 The abstraction A_P is constructed parametrically w.r.t. a set 
pred of chosen predicates as an over-approximation of the 
program P 

the arguments of A_P are the predicates in pred 

assume arguments are both input and output arguments 
(this deviates from Eiffel's standard semantics) 

each instruction inst in P is replaced by a (possibly compound) 
instruction inst' in A_P such that: 

if executing inst in P leads to a concrete state S, then 
executing inst' in A_P leads to a state which is the strongest 
over-approximation of S in terms of pred 



30 

Predicate Abstraction: Informal Overview 

• Each predicate corresponds to a Boolean expression. 

• A set of Boolean program variables in A_P track the values of the 

predicates in the abstraction. 

• Translate each instruction in P into a (compound) instruction which 

updates the Boolean variables. 

• To have an over-approximation the instructions in A_P will: 

• define whatever follows with certainty from the information 

given by the predicates 

• use under-approximations of arbitrary Boolean expressions 

through the predicates 

• everything else is nondeterministically chosen 



31 

Boolean Predicates and Expressions 

Consider a set of predicates 

       pred = {p(1), ..., p(m)} 

and a set of corresponding Boolean expressions over program 

variables 

      exp = {e(1), ..., e(m)} 

For a generic Boolean expression f over program variables, Pred(f) 

denotes the weakest Boolean expression over pred 

that is at least as strong as f (it implies f, but can be stronger). 

 Substituting every atom p(i) in Pred(f) with the 

corresponding expression e(i) gives an expression that 

implies f. 

 Pred(f) is an under-approximation of f, used to build the 

strongest over-approximations of instructions. 



32 

Boolean Under-Approximation: Example 

 pred =  { p,   q,     r   } 

 exp =   { x = 1,  x = 2,  x ≤ 3  } 

 

 Pred(x = 1)  = 

 Pred(x = 0)  = 

 Pred(x ≤ 2)  = 

 Pred(x ≠ 0)  = 



33 

Boolean Under-Approximation: Example 

 pred =  { p,   q,     r   } 

 exp =   { x = 1,  x = 2,  x ≤ 3  } 

 

 Pred(x = 1)  =  p 

 Pred(x = 0)  =  False 

 Pred(x ≤ 2)  =  p v q 

 Pred(x ≠ 0)  =  p v q v ¬r 

 

 In general: Pred (¬f) ≠ ¬ Pred (f) 



34 

Boolean Under-Approximation: rule of thumb 

We want a weakest under-approximation: 

 Start from the strongest under-approximation: 

False 

 Weaken it by adding predicates (negated or 

unnegated) in disjunction 

 (In some cases, you may also try conjunctions of 

predicates) 

 Add as many disjuncts as possible that preserve 

the under-approximation (i.e., it must always 

imply the original Boolean expression) 



35 

Boolean Under-Approximation: Uniqueness 

Pred(f) may not be (syntactically) uniquely defined 
when predicates imply each other: 

 pred =  { p,    q } 

 exp =   { x < 2,  x ≤ 2  } 

 Pred(x ≤ 3)   =  p v q 
 equivalent to = q 

 

 The following transformations are robust w.r.t. the 
choice of equivalent Pred(f).  

 When predicates imply each other, however, 
simplifications are possible (see later), so as a rule 
we always include all implied facts in Pred(f). 



36 

Abstraction of Assignments 

An assignment:   x := f 

is over-approximated by a parallel conditional assignment 

with m components. For 1 ≤ i ≤ m: 

 

    if Pred(+f(i)) then 

      p(i) := True 

    elseif Pred(-f(i)) then 

      p(i) := False 

    else p(i) := ?  end 

 

 

 +f(i) is the backward substitution of e(i) through x := f 

 -f(i) is the backward substitution of ¬e(i) through x := f 



37 

Abstraction of Assignments: Example 

 pred = { p,   q,     r } 

 exp =  { x > y, Result ≥ x,  Result ≥ y } 
 

 Result := x is over-approximated by: 

 if p then p := True elseif not p then p := False else p := ? end 

which does nothing 

 if True then q := True elseif False then q := False else q := ? end 

which is equivalent to:  q := True 

 if p then r := True elseif False then r := False else r := ? end 

which is equivalent to:  if p then r := True else r := ? end 



38 

Abstraction of Assignments: Example 

 pred =  { p,   q,    r } 

 exp =   { x = 1, y = 1,    x > y } 
 

y := x 
is over-approximated by 

q := p ; r := False 
 

{ x = y } 
is over-approximated by 

{ x ≤ y }  
({ x = y = 1 }  { x, y ≠ 1 }) 

or, equivalently, 
{ x ≤ y } 



39 

Parallel assignments are necessary 

The conditional assignments must be executed in 

parallel to guarantee that the abstraction is sound 

in general. 

Example for: p (x = True), q (x = False) 

concrete (x: BOOLEAN) do 

 x := not x 

end 

abstract_ok (p, q: BOOLEAN) 

do 

 p, q := q, p 

end 

abstract_ko (p, q: BOOLEAN) 

do 

 p := q 

 q := p 

end 



40 

Abstraction of Assumptions 

An assumption: assume  ex  end 

is over-approximated by one assumption: 

    assume  not Pred(not ex)  end 

and a parallel conditional assignment with m components. 

For 1 ≤ i ≤ m: 

     if Pred(+ex(i)) then 

       p(i) := True 

     elseif Pred(-ex(i)) then 

       p(i) := False 

     else p(i) := ?  end 

 

 +ex(i) is the backward sub. of e(i) through assume ex end 

 -ex(i) is the backward sub. of ¬e(i) through assume ex end 



41 

Abstraction of Assumptions: Example 

The double negation is used to 

get an over-approximation 

from the under-

approximation given by Pred: 

 the complement of an 

under-approximation of x 

is an over-approximation 

of the complement of x. 

 

 { p (x=1), q (x=2), 

  r (x≤3) } 

 Pred(x ≤ 2) = p v q 

 Pred(x > 2) = ¬r 

 assume x ≤ 2 end 

 assume p v q end  is 

assume x=1 v x=2 end 

 assume ¬(¬r) end  is 

assume x ≤ 3 end 



Abstraction of Assumptions: Simplification 

Except in the cases where ex  ex(i) or ex  not ex(i) are 
(unconditionally) valid, the i-th conditional assignment does not have 
any effect, hence it can be omitted. 

In fact: 

Pred(+ex(i)) = Pred(not ex  ex(i))  
   = Pred(not ex)  Pred(ex(i))  (can you prove this?) 
   = not Pred(not ex)  p(i) 

Which, given the assumption, implies: p(i) 

Pred(-ex(i))  = Pred(not ex  not ex(i))  
   = Pred(not ex)  Pred(not ex(i))  
   = not Pred(not ex)  not p(i) 

Which, given the assumption, implies: not p(i) 

In all: 

if p(i) then p(i) := True elseif not p(i) then p(i) := False else p(i) := ? e end 



Abstraction of Assumptions: Simplification 

An assumption: assume  ex  end 

is over-approximated by one simplified assumption: 

   assume  not Pred(not ex)  end 

where not Pred(not ex) includes: 

• a disjunct p(i) such for every i such that  

  ex  ex(i) is valid 

• a disjunct not p(i) such for every i such that  

  ex  not ex(i) is valid 

 



44 

Abstraction of Assertions 

An assertion: assert  ex  end 

is over-approximated with the same schema as 

assumptions, namely by one assertion: 

    assert  not Pred(not ex)  end 

and a parallel conditional assignment with m components. 

For 1 ≤ i ≤ m: 

    if Pred(+ex(i)) then 

      p(i) := True 

    elseif Pred(-ex(i)) then 

      p(i) := False 

    else p(i) := ?  end 

 +ex(i) is the backward sub. of e(i) through assert ex end 

 -ex(i) is the backward sub. of ¬e(i) through assert ex end 



45 

Abstraction of Conditionals 

A conditional: 

    if cond then 

     -- then branch 

    else 

     -- else branch 

    end 

is over-approximated by first transforming it into normal form: 

    if ? then 

     assume cond end 

     -- then branch 

    else 

     assume not cond end 

     -- else branch 

    end 

and then applying the other transformations. 



46 

Abstraction of Loops 

A loop: 

    from 

     -- initialization 

    until cond loop 

     -- loop body 

    end 

is over-approximated by first transforming it into normal form: 

    from 

     -- initialization 

    until ? loop 

     assume not cond end 

     -- loop body 

    end 

    assume cond end 

and then applying the other transformations.     



47 

Abstractions of pre and postconditions 

Preconditions are treated as assume instructions and 
postconditions as assert instructions. 

(In abstracting the postcondition, the if instructions 
can be omitted). 
 

In all our examples we will always choose predicates 
which completely describe the pre and 
postcondition, hence no abstraction will be 
introduced there. 



48 

Predicate Abstraction: Example 

max (x, y: INTEGER): INTEGER do 

if x > y then 

 Result := x 

else 

 Result := y 

end 

ensure Result ≥ x and Result ≥ y end 

Predicates: 

 p:  x > y 

 q: Result ≥ x 

 r: Result ≥ y 

Apqr_max (p, q, r: BOOLEAN) do 

if ? then 

 assume x > y end  ;  Result := x 

else 

 assume x ≤ y end  ;  Result := y 

end 

ensure Result ≥ x and Result ≥ y end 



49 

Predicate Abstraction: Example 

Predicates: 

 p:  x > y 

 q: Result ≥ x 

 r: Result ≥ y 

Apqr_max (p, q, r: BOOLEAN) do 

if ? then 

  assume p end 

Result := x 

else 

assume not p end 

Result := y 

end 

ensure q and r end 



50 

Predicate Abstraction: Example 

Predicates: 

 p:  x > y 

 q: Result ≥ x 

 r: Result ≥ y 

Apqr_max (p, q, r: BOOLEAN) do 

if ? then 

  assume p end 
q := True 
if p then r := True else r := ? end 

else 
assume not p end 
Result := y 

end 

ensure q and r end 



51 

Predicate Abstraction: Example 

Predicates: 

 p:  x > y 

 q: Result ≥ x 

 r: Result ≥ y 

Apqr_max (p, q, r: BOOLEAN) do 

if ? then 

  assume p end 

  q := True 
if p then r := True else r := ? end 

else 
assume not p end 
r := True 
if not p then q := True else q := ? end 

end 

ensure q and r end 



52 

Predicate Abstraction: Example 

Predicates: 

 p:  x > y 

 q: Result ≥ x 

 r: Result ≥ y 

Apqr_max (p, q, r: BOOLEAN) do 

if ? then 

  assume p end 
q := True 
r := True 

else 
assume not p end 
r := True 
q := True 

end 

ensure q and r end 



53 

Predicate Abstraction: Example 

max (x, y: INTEGER): INTEGER do 

if x > y then 

 Result := x 

else 

 Result := y 

end 

ensure Result ≥ x and Result ≥ y end 

Apqr_max (p, q, r: BOOLEAN) do 

if p then 

  q := True ; r := True 

else 

  r := True ; q := True 

end 

ensure q and r end 

Predicates: 

 p:  x > y 

 q: Result ≥ x 

 r: Result ≥ y 



54 

Predicate Abstraction and Verification 

What does it mean to verify the predicate abstraction A_P of a program 

P? 

 A_P is finite state 

verification is decidable: we can verify A_P automatically 

 A_P is an over-approximation of P 

if A_P is correct then so is P 

 any run of P is abstracted by some run of A_P 

if A_P is not correct we can't conclude about the correctness 

of P 

 a counterexample run of A_P: the abstract counterexample r 

if r is also the abstraction of some run of P then P is also 

not correct 

if r is a run which infeasible for P then r is a spurious 

counterexample 



55 

Model-checking a Boolean Program 

For a Boolean program P over predicates pred = {p(1), ..., p(m)} 

P's body: a sequence loc = [L(1), ..., L(n)] of instructions or conditional jumps 

P's postcondition: post 

Build an    FSA = [Σ, S, I, ρ, F] where: 

Σ = loc 

S = {True, False}m x  ( loc U {halt} ) 

each state in S denotes a program state: 

a truth value for every Boolean variable in pred 

a program location which represents the next line to be executed, 
or halt if the execution has terminated 

I = { [v(1), ..., v(m), L(1)] ∈ S } 

the initial states are for any value of the input Boolean arguments 

L(1) is the next instruction to be executed 

[v'(1), ..., v'(m), L']  ∈ ρ ([v(1), ..., v(m), L], L)  iff one of the following holds: 

L is a conditional jump and: [v(1), ..., v(m)] satisfies the condition; v'(i) = v(i) for all 1 ≤ i ≤ m;  L' is the target 
of the jump when successful. 

L is a conditional jump and: [v(1), ..., v(m)] does not satisfy the condition; and v'(i) = v(i) for all 1 ≤ i ≤ m;  L' is 
the target of the jump when unsuccessful 

L is an instruction and: [v'(1), ..., v'(m)] is the state resulting from executing L on state [v(1), ..., v(m)]; and 
L' is the successor of L (or halt if the program halts after executing L) 

F = { [v(1), ..., v(m), halt] ∈ S  |  post does not hold for [v(1), ..., v(m)] } 

error states: halting states where the postcondition doesn't hold 



56 

Predicate Abstraction: Example 

Apqr_ max (p, q, r: BOOLEAN) do 

1: if p 

2: then  q := True 

3:  r := True 

4: else  r := True 

5:   q := True 

 end 

ensure q and r end 



57 

Predicate Abstraction: Example 

 Error states: including predicates 
¬q or ¬r without outgoing edges 

 There are clearly no accepting 
(error) runs because the error 
states are not even connected 

 Apqr_max is correct and so is max 

Apqr_ max (p, q, r: BOOLEAN) do 

1: if p 

2: then  q := True 

3:  r := True 

4: else  r := True 

5:   q := True 

 end 

ensure q and r end 



58 

Detection of Spurious Counterexamples 

 



59 

Predicate Abstraction and Verification 

What does it mean to verify the predicate abstraction A_P  

of a program P? 

 

A_P is an over-approximation of P 

 if A_P is not correct we can't conclude about 

the correctness of P 

 a counterexample run of A_P: the 

abstract counterexample r 

  if r is also the abstraction of some run of P 

then P is also not correct 

 if r is a run which infeasible for P 

then r is a spurious counterexample 

 

Let us show an automated technique to detect spurious counterexamples. 



60 

Abstract Counterexamples 

Consider an abstract counterexample (c.e.), i.e. a run of 
the finite-state predicate abstraction A_P 

{ Pred(0) }          { Abstract initial state } 
inst(1)            Instruction or test 

{ Pred(1) }         { Abstract state } 
inst(2)      Instruction or test 
 ...              ... 
inst(N)          Instruction or test 

{ Pred(N) }     { Abstract final state } 
 

Goal: find whether there exists a concrete run of P which 
is abstracted by this abstract counterexample 



61 

Abstract Counterexamples: Example 

max (x, y: INTEGER): INTEGER do 

if x > y then 

 Result := x 

else 

 Result := y 

end 

ensure Result ≥ x and Result ≥ y end 

Aqr_max (q, r: BOOLEAN) do 

if  ? then 

 q := True ; r := ? 

else 

 r := True ; q := ? 

end 

ensure q and r end 

Predicates: 

 q: Result ≥ x 

 r: Result ≥ y 



62 

Abstract Counterexamples: Example 

 Error states: 
including ¬q or ¬r  
and without 
outgoing edges 

 An abstract 
counterexample 
trace in green 

Aqr_max (q, r: BOOLEAN) do 

if  ? then 

 q := True ; r := ? 

else 

 r := True ; q := ? 

end 

ensure q and r end 



63 

Concrete Run of Abstract C.E. 

Because of how A_P has been built, there exists a instruction in 
P for every (possibly compound) instruction in A_P 
 
Abstract run:         Concrete run: 

{ Pred(0) } 

 inst(1)           Concrete-inst(1) 

{ Pred(1) } 

 inst(2)            Concrete-inst(2) 
 ...                 ... 

 inst(N)           Concrete-inst(N) 

{ Pred(N) }               
 

Let us check whether the concrete run is infeasible, according 
to the semantics of P. 



64 

Feasibility of a Concrete Run 

Compute the weakest precondition of Pred(N) over the concrete run 
with conditions (assume, conditionals, or exit conditions) interpreted 
as assert (this is doable automatically, modulo undecidability of the 
used logic fragment, because there are no loops in the run): 
 
Abstract run:     Concrete run: 

{ Pred(0) }        { WP(0) } 

 inst(1)         Concrete-inst(1) 

{ Pred(1) }          { WP(1) } 

 inst(2)           Concrete-inst(2) 

  ...               ... 

 inst(N)          Concrete-inst(N) 

{ Pred(N) }     { Pred(N) } 
 

Every formula WP(i) characterizes the states of P reaching a final state 
where Pred(N) holds and hence where the postcondition fails. 



65 

Feasibility of a Concrete Run 

The concrete run is infeasible if WP(i) and Pred(i) is 
unsatisfiable for some 1 ≤ i ≤ N. 
 
Concrete run: 

{ Pred(0)       and   WP(0) } 
 Concrete-inst(1) 

{ Pred(1)       and   WP(1) } 

  Concrete-inst(2) 

   ...  
 Concrete-inst(N) 

{ Pred(N)      and    Pred(N) } 



66 

Spurious Counterexamples: Example 

Abstract c.e. trace: 

{q, ¬r} 

 [?] 

{q, ¬r} 

 q := True ; r := ? 

{q, ¬r} 

Concrete trace: 

{x > y and x < y} 

 assert x > y end 

{x ≥ x and x < y} 

 Result := x 

{Result ≥ x and Result < y} 

The counterexample is infeasible because: 

{q and x > y and x < y}  is inconsistent 

as {q and x > y} implies {x ≥ y} 



67 

Abstract Counterexamples: Example 

neg_pow (x, y: INTEGER): INTEGER do 

require x < 0 and y > 0 

 from Result := 1 
until y ≤ 0 
loop 

  Result := Result * x 
 y := y – 1 

 end 

ensure Result > 0 end 

Apqr_neg_pow (p, q, r: BOOLEAN) do 

require p and q 

 from r := True 
until ¬q 
loop 

  if p and r then r := False else r := ? end 
 q := ? 
end 

ensure r end 

Predicates: 

 p: x < 0 

 q: y > 0 

 r: Result > 0 



68 

Abstract Counterexamples: Example 

Predicates: 

 p: x < 0 

 q: y > 0 

 r: Result > 0 

Abstract c.e. trace: 
{p, q, ¬r} 
 r := True 
{p, q, r} 
 [q] 
{p, q, r} 
 [p and r] 
{p, q, r} 
 r := False 
{p, q, ¬r} 
 q := ? 
{p, ¬q, ¬r} 
 [¬q] 
{p, ¬q, ¬r} 

Apqr_neg_pow (p, q, r: BOOLEAN) do 

require p and q 

 from r := True 
until ¬q 
loop 

  if p and r then r := False else r := ? end 
 q := ? 
end 

ensure r end 



69 

Abstract Counterexamples: Example 

Abstract c.e. trace: 

{p, q, ¬r} 

 r := True 

{p, q, r} 

 [q] 

{p, q, r} 

 [p and r] 

{p, q, r} 

 r := False 

{p, q, ¬r} 

 q := ? 

{p, ¬q, ¬r} 

 [¬q] 

{p, ¬q, ¬r} 

Concrete trace: 

{x < 0 and y = 1} 

 Result := 1 

{x < 0 and y = 1 and Result*x ≤ 0} 

 assert y > 0 end 

{x < 0 and y ≤ 1 and Result*x ≤ 0} 

 

 

 Result := Result * x 

{x < 0 and y ≤ 1 and Result ≤ 0} 

 y := y - 1 

{x < 0 and y ≤ 0 and Result ≤ 0} 

 assert y ≤ 0 end 

{x < 0 and y ≤ 0 and Result ≤ 0} 



70 

Abstract Counterexamples: Example 

Predicates: 

 p: x < 0 

 q: y > 0 

 r: Result > 0 

The counterexample is 
feasible. We have found a 
real bug in the concrete 
program occurring for 
input y = 1 (and any x < 0). 

Concrete trace: 

{x < 0 and y = 1} 

 Result := 1 

{x < 0 and y = 1 and Result*x ≤ 0} 

 assert y > 0 end 

{x < 0 and y ≤ 1 and Result*x ≤ 0} 

 

 

 Result := Result * x 

{x < 0 and y ≤ 1 and Result ≤ 0} 

 y := y - 1 

{x < 0 and y ≤ 0 and Result ≤ 0} 

 assert y ≤ 0 end 

{x < 0 and y ≤ 0 and Result ≤ 0} 



71 

Predicate Discovery and Refinement 

 



72 

Predicate Discovery 

A spurious counterexample shows that the used 
abstraction is too coarse. 

 
We build a finer abstraction by adding new 
predicates to the set pred. 

 
These new predicates must be chosen so that the 
spurious counterexample is not allowed in the new 
abstraction. 



73 

Syntax-based Predicate Discovery 

The simplest way to find new predicates is syntactic: 

Concrete run: 

{ Pred(0)   and   WP(0) }    { WP(0) } \ { Pred(0) } 

 Concrete-inst(1) 

{ Pred(1)   and   WP(1) }      { WP(1) } \ { Pred(1) } 
Concrete-inst(2) 
  ...  
Concrete-inst(N) 

{ Pred(N)   and   Pred(N) }      { Pred(N) } \ { Pred(N) } 
 

Look for predicates that: 

 hold in the concrete run 

 are not traced by any predicate in the abstract run 

 contradict the predicates in the abstract run 



74 

Syntax-based Predicate Discovery: Example 

Concrete trace: 

{x > y, ¬r} \ {q, ¬r} 

 assert x > y end 

{True, ¬r} \ {q, ¬r} 

 Result := x 

{q, ¬r} \ {q, ¬r} 

The predicate from the concrete run that is not 
traced in the abstract run is: 

 p = x > y 

Predicate p contradicts {q, ¬r}. It is enough to 
verify the program with the new abstraction. 

Predicates: 

 q: Result >= x 

 ¬r: Result < y 



75 

Summary, Tools, and Extensions 

 



76 

CEGAR: Summary 

 Finite-state predicate abstraction of real programs 

Static analysis & abstract interpretation 

 Automated verification of finite-state programs 

Model checking of reachability properties 

 Detection of spurious counterexamples 

Axiomatic semantics & automated theorem proving 

 Automated counterexample-based refinement 

Symbolic model-checking techniques 



77 

Software Model-Checking Tools 

CEGAR software model-checkers 

 SLAM  -- Ball and Rajamani, ~2001 

first full implementation of CEGAR software m-c 

used at Microsoft for device driver verification 

 BLAST -- Henzinger et al., ~2002 

does lazy abstraction: partial refinement of abstract program 

several extensions for arrays, recursive routines, etc. 

 Magic -- Clarke et al., ~2003 

modular verification of concurrent programs 

 F-Soft -- Gupta et al., ~2005 

Combines software model-checking with abstract 
interpretation techniques 

 CBMC & SATABS -- Kroening et al., ~2005 

Use bounded model-checking techniques 



78 

Software Model-Checking Tools 

Other (non CEGAR) software model-checking tools  

 Verisoft -- Godefroid et al. ~2001 

 Java PathFinder -- Visser et al., ~2000 

 Bandera -- Hatcliff, Dwyers, et al., ~2000 



79 

Software Model-Checking: Extensions 

 Inter-procedural analysis 

 Complex data structures 

 Concurrent programs 

 Recursive routines 

 Heap-based languages 

 Termination analysis 

 Integration with other verification techniques 

Static analysis 

Testing 

 ... 

 

None of these directions is exclusive domain of software 
model-checking, of course... 


