
Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Java: framework overview
and in-the-small features

Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Java: framework overview

3
Java and C# in depth

What’s in a name

Initially was “Oak” (James Gosling, 1991), then “Green”
§  Ruled out by the trademark lawyers

Twelve people locked in a room together with a “naming consultant”

§  “How does this thing make you feel?”
§  “What else makes you feel that way?”

After listing and sorting, 12 names were sent to the lawyers

§  #1 was “Silk”
§  Gosling’s favorite was “Lyric” (#3)
§  “Java” was # 4

Version 1.0: 1995

Latest stable version: 7 Update 13 (1.2.13)

4
Java and C# in depth

Java platform goals

§  Write Once, Run Anywhere

§  Built-in security

§  Automatic memory management

§  API + documentation generation

§  Object-Oriented

§  Familiar C/C++ syntax

5
Java and C# in depth

Write once, run anywhere

compiler .class/

.jar

network

H

w

Class loader

Bytecode
verifier

JIT compiler

Interpreter

JVM

.java
exec

6
Java and C# in depth

Bytecode

§  Intermediate format resulting from Java
compilation

§  Instruction set of an architecture that
§ is stack-oriented
§ provides capability (object access rights)

§  1 bytecode instruction = 1 byte

§  Executed by any platform-specific Virtual
Machine (VM)

7
Java and C# in depth

JVM overview

.java compiler .class.
jar

network

H

w

Class loader

Bytecode
verifier

JIT compiler

Interpreter

JVM

exec

8
Java and C# in depth

Security: language restrictions and support

§  No pointers, no explicit memory de-allocation

§  Checked type casts (at compile time and
runtime)

§  Enforced array bounds (at runtime)

§  Security APIs
§  SecurityManager (standard security)
§  XML digital signature, Public Key

Infrastructure, cryptographic services,
authentication

9
Java and C# in depth

Security: class loaders

§  Take care of files and file systems

§  Locate libraries and dynamically load
classes

§  Partition classes into realms (e.g. local
machine, local network, all the rest) and
restrict what they can do

10
Java and C# in depth

Security: Bytecode verifier

§  Verifier checks bytecode using a “theorem prover”
§  Branches always to valid locations
§  Data always initialized
§  Types of parameters of bytecode instructions

always correct
§  Data and methods access checked for visibility
§  Arbitrary bit patterns cannot get used as an

address
§  No operand stack overflows and underflows"

11
Java and C# in depth

JVM: code generation

.java compiler .class.
jar

network

H

w

Class loader

Bytecode
verifier

JIT compiler

Interpreter

JVM

exec

12
Java and C# in depth

Code generation: HotSpot
§  The interpreter is the software CPU of the JVM

§  Examines each bytecode and executes a unique native
procedure

§  No native code is produced

§  A JIT “compiler” converts the bytecode into native code
just before running it
§  Keeps a log (cache) of the native code that it has to run to

execute each bytecode
§ May optimize substituting a short set of instructions with a

shorter/faster one
§  Like the back-end of a traditional compiler, the java

compiler being the front-end

§  HotSpot is the default SUN JVM since 2000

13
Java and C# in depth

JVM Overview

.java compiler .class.
jar

network

H

w

Class loader

Bytecode
verifier

JIT compiler

Interpreter

JVM

exec

14
Java and C# in depth

JVM: more features

§  Automated exception handling
§  Provides “root cause” debugging info for every exception

§  Responsible for garbage collection

§  Ships as JRE (VM + libraries)

§  Can have other languages run on top of it, e.g.
§  JRuby (Ruby)
§  Rhino (JavaScript)
§  Jython (Python)
§  Scala

§  From 6.0 scripting languages can be mixed with Java code

15
Java and C# in depth

Command-line Java

§  Compile
javac MainClass.java

§  Execute
java MainClass

§  Generate documentation
javadoc MainClass.java

§  Generate an archive from .class files in current dir
jar cf myarchive.jar *.class

Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Java: in-the-small language features

17
Java and C# in depth

Encoding and formatting

§  Uses unicode as encoding system: www.unicode.org

§  Free format
§  Blanks, tabs, new lines, form feeds are only used to keep

tokens separate

§  Comments
§  Single line: //Single line comment
§ Multiple lines: /* non-nested, multi-line

 comment*/
§  Javadoc comment: /** processed by javadoc */

18
Java and C# in depth

Identifiers

§  No restriction on length

§  Case sensitive

§  Cannot start with a digit

§  Cannot include / or -

§  Cannot be a keyword

19
Java and C# in depth

Annotations

Meta-data about programs
§  Compiler flags

e.g: @Deprecated, @Override, @SuppressWarnings
§  Information that can be used for compilation (or other

forms of code analysis)
e.g.: @Inherited, application-defined such as @RevisionId

§  Some runtime processing
e.g.: application-defined

20
Java and C# in depth

Keywords

§  Literals null, true, false are also reserved

abstract double int super
boolean else interface switch
break extends long synchronized
byte final native this
case finally new throw
catch float package throws
char for private transient
class (goto) protected try

(const) if public void
continue implements return volatile
default import short while

do instanceof

21
Java and C# in depth

Operators

§  Access, method call: ., [], ()
§  Postfix: expr++, expr-- (R to L)
§  Other unary: ++expr, --expr, +, -, ~, !, new, (aType)
§  Arithmetic: *, /, %
§  Additive: +, -
§  Shift: <<, >>, >>>
§  Relational: <, >, <=, >=, instanceof
§  Equality: ==, !=
§  Logical (L to R): &, ^, |, &&, ||
§  Ternary: condition ? (expr1):(expr2) (R to L)
§  Assignment: =, +=, -=, *=, /=, %=, &=, ^=, |=, <<=,
>>=, >>>=

§  Precedence: from top to bottom
§  Tip: don’t rely too much on precedence rules: use parentheses

22
Java and C# in depth

Type system Basics

§  Primitive types
§  boolean, byte, short, int, long, char,
float, double

§  Reference types
§  class, interface, []

§  null
§  Automatic widening conversions (no precision loss)

§  byte to short to int to long
§  char to int, int to double, float to double

§  Automatic widening conversions (precision loss)
§  int to float, long to float, long to double

§  A cast is required for narrowing conversions
int i = 3; long j = 5; i = (int) j

23
Java and C# in depth

Widening conversions with precision loss

float g(int x){
 return x;

}
...
int i = 1234567890;
float f = g(i);
System.out.println(i - (int)f)
// output: -46
...

24
Java and C# in depth

Wrapper types and autoboxing

§  For each primitive type there is a wrapper type

§  Boolean, Byte, Short, Integer, Long,
Character, Float, Double

§  Starting from 5.0, autoboxing provides automatic
conversions between primitive and wrapper types

§  Pro: reduces code complexity

§  Cons: not efficient, sometimes unexpected behavior

25
Java and C# in depth

Some surprises of autoboxing

new Integer(7).equals(7)//true

new Long(7).equals(7)//false. True if equals(7L)

new Integer(7).equals(new (Long(7))) //false

new Integer(7) == 7 //true

new Long(7) == 7 //true

new Integer(7) == new Long(7)//compiler error

26
Java and C# in depth

Control flow: conditional branch

Same syntax as in C/C++
	
	

 if (booleanExpr)
 {
 // do something
 }
 else // else is optional
 {
 // do something else
 }

	

27
Java and C# in depth

Control flow: loops

while (booleanExpr)
{

 // execute body
 // until booleanExpr becomes false

}

do
{

 // execute body (at least once)
 // until booleanExpr becomes false

}
while (booleanExpr);

28
Java and C# in depth

Control flow: for loop

for (int i=0; i < n; i++)
{

 // execute loop body n times
}

// equivalent to the following
int i=0;
while (i < n)
{

 // executes loop body n times
 i++;

}

29
Java and C# in depth

Control flow: enhanced for loop

Introduced in Java 5.0
	

 for (variable : collection)
 {
 // loop body
 }

	
§  collection is an array or an object of a class that

implements interface Iterable
§ more on classes and interfaces later

§  Executes the loop body for every element of the
collection, assigned iteratively to variable

30
Java and C# in depth

Control flow: switch selector
switch (Expr)
{

 case Value1: instructions;
 break;
 case Value2: instructions;
 break;
 // ...
 default: instructions;

}
Expr can be of type:
§  byte, short, int, char (or wrapped counterparts)
§  enum types
§  String (compared with equals) (new in Java 7)

31
Java and C# in depth

Breaking the control flow: break

label: [while | do | for]
§  Identifies a loop
§  (Or a code block)

break optionalLabel;

§  Within a loop or a switch
§  No label: exit the loop or switch
§  With label:

§ within loop: jump out of the loop to label
optionalLabel	

§ within switch: jump out of switch block to label
optionalLabel

32
Java and C# in depth

Breaking the control flow: continue

label: [while | do | for]
§  Identifies a loop
§  (Or a code block)
	

continue optionalLabel;
§  Within a loop
§  No label: skip the remainder of the current iteration and

continue with the next iteration
§  With label:

§  skip the remainder of the current iteration and
continue with the next iteration of the loop with label
optionalLabel	

