
Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

C#: framework overview
and in-the-small features

Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

C#: framework overview

3
Java and C# in depth

What’s in a name

Internal name of initial project: Cool (C-like Object Oriented Language)
§  Ruled out by the trademark lawyers

Chief C# architect at Microsoft: Anders Hejlsberg

§  Previously on Turbo Pascal & Delphi

Grounded in the .NET platform and CLI (Common Language Infrastructure)

“An imitation of Java”

§  According to Java’s Bill Gosling

Version 1.0: 2001

Latest version: 5.0 (August 2012)

4
Java and C# in depth

C# platform goals (from ECMA standard)

§  Simple, general-purpose, object-oriented
§  Correct and robust

§  strong type checking, array bounds checking, detecting
usage of uninitialized variables, automated memory
management, ...

§  Component- and reusability-oriented
§  Programmer-portable

§  easy for developers coming from C/C++ and from
other .NET languages

§  No direct competition with C in terms of performance
§  Introduction of selected functional programming features

§  Main motivation: dealing with data conveniently

5
Java and C# in depth

CLI: Common Language Infrastructure

6
Java and C# in depth

CIL and Assemblies

§  C# compilation produces CIL (Common Intermediate
Language) code

§  Instruction set similar to Java bytecode
§  “object-oriented stack-based assembly code”

§  CIL code is organized in assemblies
§  for Windows platforms: .exe and .ddl

§  Executed by a Virtual Machine (VM)
§  .NET on Windows platforms
§ Mono for Linux/Unix

§  Code generation usually with a JIT compiler
§  AOT (Ahead-Of-Time) option also available

7
Java and C# in depth

Security
1.  Of the language:

§  Restricted: no pointers, no explicit memory de-allocation, checked
type casts, enforced array bounds

2.  Of the runtime: CAS (Code Access Security)

§  Code group
§  Associate evidences with permission types
§  Associations vary according to environment-dependent

policies
§  Evidence

§  Any information associated with an assembly
§  E.g., digital signature of publisher, URL, an hash

identifying the version, etc.
3.  Verification and validation

§  Series of checks that make sure that the code doesn’t do anything
clearly unsafe
§  Checks can be quite conservative: safe code may be rejected

8
Java and C# in depth

Code generation: CLR

§  CLR can denote two things:
§  the runtime component of CLI
§ Microsoft’s implementation of it for Windows platforms

§  A JIT compiler converts CLI bytecode into native code
just before running it
§  classes and methods are compiled dynamically just when

they are needed

§  Alternatively, a AOT (Ahead-Of-Time) compiler
translates the whole application in native code
§  NGEN (Native Image Generator) in Microsoft’s CLR
§  not necessarily overall faster than JIT: certain dynamic

optimization can be done only with JIT

9
Java and C# in depth

CLR: more features
§  Exception handling

§  Memory management (garbage collection)

§  Threads and concurrency

§  Usually includes set of libraries:
FCL (Framework Class Libraries)

§  Has other languages running on top of it
§  VB.NET
§  J# (transitional language from Java to C#)
§  IronPython, IronRuby, IronScheme
§  ...

10
Java and C# in depth

Command-line C#

§  Compile
 csc a_file.cs // Microsoft .NET
mcs a_file.cs // Mono .NET

§  Execute
 a_file.exe
./a_file.exe

§  Generate XML documentation
csc /doc:docu.xml a_file.cs
mcs -doc:docu.xml a_file.cs

§  Compile all .cs files in the current directory and pack
them in a DLL

 csc /target:library /out:a_library.dll *.cs
 mcs -target:library -out:a_library.dll *.cs

Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

C#: in-the-small language features

12
Java and C# in depth

Encoding and formatting

§  Uses unicode as encoding system: www.unicode.org

§  Free format
§  Blanks, tabs, new lines, form feeds are only used to keep

tokens separate

§  Comments
§  Single line: //Single line comment
§ Multiple lines: /* non-nested, multi-line

 comment */
§  Comment for XML documentation system:

 /** multi /// single-line
 line */

13
Java and C# in depth

Identifiers

§  Maximum length: 255 characters

§  Can start with _ or @ or a letter

§  Cannot start with a digit or a symbol other than _ or @

§  Cannot include / or –

§  @ can appear only in the first position

§  Cannot be a keyword

14
Java and C# in depth

Attributes are something else in C#
The counterparts to Java’s annotations
Meant to provide additional declarative information about
program entities, which can be retrieved at run-time.
Typical usages:

§  Debugging information
e.g.: line number in the source where a method is called
[CallerLineNumber]

§  Information for code analysis/compilation
e.g.: to compile certain code only in debugging mode
[Conditional (“DEBUG”)]

§  Compiler flags
e.g.: to generate a warning during compilation
[Obsolete (“You’d better use class X instead”)]

15
Java and C# in depth

Keywords
abstract as base bool
break by byte case
catch char checked class

const continue decimal default

delegate do double descending
explicit event extern else
enum false finally fixed
float for foreach from

goto group if implicit

in int interface internal
into is lock long
new null namespace object
operator out override orderby
params private protected public
readonly ref return switch
struct sbyte sealed short

sizeof stackalloc static string

select this throw true

try typeof uint ulong

unchecked unsafe ushort using

var virtual volatile void

while where yield

16
Java and C# in depth

Operators

§  Primary: ., (), [], x++, x--, new, typeof,
 checked, unchecked

§  Unary: +, -, !, ~, ++x, --x, (aType)x
§  Multiplicative: *, /, %
§  Additive: +, -
§  Shift: <<, >>
§  Relational: <, >, <=, >=, is, as
§  Equality: ==, !=
§  Logical (precedence left to right): &, ^, |, &&, ||
§  Conditional: condition ? (expr1):(expr2)
§  Assignment: =, +=, -=, *=, /=, %=, &=, |=, ^=, <<=,
>>=

§  Precedence: from top to bottom
§  Tip: don’t rely too much on precedence rules: use parentheses

17
Java and C# in depth

Overflow handling

int i = 2147483647 + 10; // compiler error
int ten = 10
int j = 2147483647 + ten; /* no compiler error.
Result: -2147483639. Overflow checking can be
enabled by compiler options, environment
configuration or the checked keyword. */
Console.WriteLine(checked(2147483647 + ten));
// OverflowException
Console.WriteLine(unchecked(2147483647 + 10));
// no compiler error. Result: -2147483639

18
Java and C# in depth

Type system: value types

§  Basic value types
§  sbyte, short, int, long, byte, ushort,
uint, ulong, decimal, float, double, bool,
char

§  struct
§  enum

§  Nullable types for value types
 int? n = null; ...

 if (n != null){int m = n.Value}

 int p = n ?? 7 //null coalescing operator:

 //if n != null p = n, otherwise p = 7

19
Java and C# in depth

Type system: reference types

§  [] (arrays)
§  class
§  interface
§  delegate
§  event
§  Pointers

§  restricted to blocks marked unsafe
§  unsafe blocks can be executed only with certain

permissions enabled

20
Java and C# in depth

Widening conversions with precision loss

float g(int x){
 return x;

}
...
int i = 1234567890;
float f = g(i);
Console.writeline(i - (int)f)
// output: -46
...

21
Java and C# in depth

Boxing and unboxing

§  Variables of value types are stored on the stack
§  Variables of reference types are stored on the heap

§  Boxing transforms a value type into a reference of type
object and is implicit
int i = 2; object o = i;

i o

§  Unboxing transforms a reference of type object into a
value type and requires a cast
object o = 3; int i = (int)o;

2 int
2

22
Java and C# in depth

Control flow: conditional branch

Same syntax as in C/C++/Java
	
	

 if (booleanExpr)
 {
 // do something
 }
 else // else is optional
 {
 // do something else
 }

	

23
Java and C# in depth

Control flow: loops

while (booleanExpr)
{

 // execute body
 // until booleanExpr becomes false

}

do
{

 // execute body (at least once)
 // until booleanExpr becomes false

}
while (booleanExpr);

24
Java and C# in depth

Control flow: for loop

for (int i=0; i < n; i++)
{

 // execute loop body n times
}

// equivalent to the following
int i=0;
while (i < n)
{

 // execute loop body n times
 i++;

}

25
Java and C# in depth

Control flow: foreach loop

	
 foreach (variable in collection)
 {
 // loop body
 }

	
§  collection is an array or an object of a class that

implements IEnumerable

§  Executes the loop body for every element of the
collection, assigned iteratively to variable

26
Java and C# in depth

Control flow: switch selector
switch (Expr) {

 case value: instructions;
 break;
 case value: instructions;
 break;
 // ...
 default: instructions;
 break;

}

§  Expr can be an integer or string expression
§  break is required after each non-empty block

§  Including the default block
§  Fall through forbidden

unless an instructions block is empty

27
Java and C# in depth

Breaking the control flow: break and continue

break;

§  Within a loop or a switch
§  Exit the loop or switch
	

continue;
§  Within a loop
§  Skip the remainder of the current iteration and continue

with the next iteration

28
Java and C# in depth

Breaking the control flow: goto

Label: instruction
§  Identifies an instruction (possibly compound, such as a

loop)

goto Label;

§  Anywhere
§  Transfer control directly to the labeled statement

goto case value;
goto default;

§  Within a switch (replacing standard break
terminator)

§  Transfer control to the corresponding case or to the
default

