
Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Java: introduction to
object-oriented features

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Java classes and objects

3
Java and C# in depth

Classes and objects

 The basic encapsulation unit is the class

 as in every object-oriented language

 A class is made of a number of features (or members)

 instance variables (attributes, fields)

 methods

 Classes and features have different levels of visibility

 Objects are class instances

 and classes are sets of objects

 or blueprints for creating objects

 constructors are special methods to create new objects

 in Java, objects are automatically destroyed when no

longer referenced (garbage collection)

 no destructors, but optional finalize methods

4
Java and C# in depth

A simple class example

package ch.ethz.inf.se.javacsharpindepth;

/**

 * @author John H. Doe

 */

public class MainClass {

 // ’main’ must be all lowercase

 public static void main (String[] args) {

 Game myGame = new Game();

 System.out.println("Game starts!");

 myGame.startGame();

 }

}

5
Java and C# in depth

Attributes (instance variables)

 Relate to a class instance

 Declared within the class curly brackets, outside any

method

 Visible at least within the class scope, within any method

of the class

 Automatically initialized to the default values

 0 or 0.0 for numeric types, ’\u0000’ for chars, null for

references, false for booleans

6
Java and C# in depth

Methods (instance methods)

 Relate to an instance and are declared within the class

curly brackets

 May have arguments

 Must have return type (possibly void)

 boolean test(int i, boolean b){

 // some stuff here

 return true;

 }

 Constructors are “special” (more on this later)

7
Java and C# in depth

Information hiding

Attribute and method visibility “modifiers”:

 public: visible everywhere

 protected: visible in the same package and in

subclasses (wherever they are)

 (*): visible in the same package

 private: visible only in the class in which it is defined

Class visibility

 Top level classes can only have default or public visibility

 Nested classes can have any chosen visibility level

 (except for inner classes: see later)

(*) No keyword for “package” visibility: it’s the default

8
Java and C# in depth

The static modifier

When applied to non-local variables and methods

 Relates to a specific class, not to a class instance

 Shared by every object of a certain class

 Accessed without creating any class object

MyClass.myStaticAttribute

MyClass.myStaticMethod()

The static modifier does not apply to top-level classes in

Java

9
Java and C# in depth

Constructors

 Same name as the class

 No return type (not even void)

 An argumentless constructor is provided by default

if no other constructor is explicitly given

10
Java and C# in depth

Local variables

 Declared within a method’s scope

(denoted by curly brackets)

 Visible only within the method’s scope

 De-allocated at method end

 Not automatically initialized

 warning if no explicit initialization is given

11
Java and C# in depth

The keyword this

Refers to the current object

public class Card {

 private int value;

 public int getValue() {

 return value;

 }

 public void setValue(int value) {

 this.value = value;

 }

}

12
Java and C# in depth

Nested classes

A class defined inside another class, that may access its
private data. (Nested is the opposite of “top-level”.)

Variants of nested classes

 Inner class: non-static nested class

 can reference the outer class instance

 there’s a one-to-one correspondence between instances of the

containing and inner class

 static nested class

 no references to the outer class (non-static) instance

 Anonymous (inner) class: inner class without a name,

defined in the middle of a method or initialization block

 no visibility specifiers allowed

 Local (inner) class: inner class with a name, defined in

the middle of a method or initialization block

 no visibility specifiers allowed

13
Java and C# in depth

Anonymous inner class example

public void start(int num) {

 // ActionListener is an interface

 ActionListener listener = new ActionListener()

 // anonymous inner class starts here

 {

 public void actionPerformed(ActionEvent e) {

 // reaction code here; may refer to num

 }

 }; // anonymous inner class ends here

 // other code here

}

 Which design pattern does this example suggest?

14
Java and C# in depth

Anonymous inner class example

public void start(int num) {

 // ActionListener is an interface

 ActionListener listener = new ActionListener()

 // anonymous inner class starts here

 {

 public void actionPerformed(ActionEvent e) {

 // reaction code here; may refer to num

 }

 }; // anonymous inner class ends here

 // other code here

}

This is an instance of the observer design pattern

15
Java and C# in depth

Method overloading

 Using the same name with different argument list

 list can differ in length, argument type, or both

 Example: constructors

 Method signature: name + arguments list

 The return type is not part of the signature

 Tip: overloading may reduce readability: don’t abuse it

16
Java and C# in depth

Method overloading with subtypes

When a method name is overloaded with argument types that

are related by inheritance, method resolution selects the

“closest” available type.

Example: Student is a subtype of Person

 class X {

 // v1

 void foo (Person p) { }

 // v2

 void foo (Student p) { }

 }

X x = new X();

x.foo(new Person()); // Executes v1

x.foo(new Student()); // Executes v2

17
Java and C# in depth

Method overloading with subtypes

When a method name is overloaded with argument types that

are related by inheritance, method resolution selects the

“closest” available type.

Example: Student is a subtype of Person

 class Y { void foo (Person p) { ... } }

 class Z { void foo (Student p) { ... } }

Y y = new Y();

y.foo(new Person()); // OK

y.foo(new Student()); // OK

Z z = new Z();

z.foo(new Person()); // Error

z.foo(new Student()); // OK

18
Java and C# in depth

Operator overloading

 No custom operator overloading is possible

 Only “+” for String is overloaded at language level

 System.out.println(

 “Custom operator overloading ” +
 “would have been nice…”)

19
Java and C# in depth

Method argument passing

 All the primitive types are passed by value

 Inside the method body we work with a local copy

 We return information using the return keyword

 (Object) Reference types are passed by value too, but:

 What is passed by value is the reference (i.e., an object

address)

 Consequently, a method can change the state of the

object attached to the actual arguments through the

reference

20
Java and C# in depth

Variable number of arguments

To pass a variable number of arguments to a method:

 Use a collection (including arrays)

 From Java 5.0: varargs arguments “...”

 public void write(String ... someStrings) {

 for (String aString : someStrings) {

 System.out.println(aString);

 }

 }

 This is just syntactic sugar for an array

 You can pass an array as actual

 The varargs parameter must be the only one of its

kind and the last one in the signature

21
Java and C# in depth

Block initializers (a.k.a. initialization blocks)

 Similar to “anonymous” method bodies

 without signature and return type, only curly brackets and
possibly the static modifier

 The code within them is executed during initialization

 Can be static or non-static

 Useful to perform some computation before the

constructors are invoked

 Factor out code common to multiple constructors

 Initialize final static variables

22
Java and C# in depth

Finalizer methods

The Object class includes a method:

 protected void finalize()

which can be overridden in any class.

The finalize method is called just before garbage collection

 May never be called, if an object is not collected

 No real-time guarantee that the object is collected right

after finalize is executed

What’s for: do some final clean-up upon object disposal

 E.g.: resources not properly released beforehand

It is not meant for general release of resources

 Files and other I/O resources have “close/destroy”

methods, which should be called explicitly

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Inheritance, polymorphism,
and dynamic dispatching

24
Java and C# in depth

Inheritance

 We can explicitly “extend” from one class only

 Otherwise, every class implicitly extends Object

 Public and protected inherited fields and methods are
available in the heir.

 Package-visible (no visibility specifiers) inherited
members are visible only in heirs within the same
package.

25
Java and C# in depth

Overriding and dynamic dispatching

 Overriding: method redefinition in a subclass

 Overriding rule:

 (before Java 5.0) overriding method must have the same

signature and return type as in the superclass

 (from Java 5.0) overriding method must have the same

signature as in the superclass and a covariant return type

of the superclass

 Annotation @Override avoids compiler warning

 Dynamic dispatching applies

 The keyword final prevents overriding in subclasses

 Overriding cannot reduce the visibility of a method

 e.g.: from public to private

 No overriding for static methods

26
Java and C# in depth

Covariant return types example

In Java 5.0 the return type of an overridden method can be
a subtype of the base method’s return type.

class Account { ... }

class SavingsAccount extends Account { ... }

class AccountManager {

 public Account GetAccount() { ... }

}

class SavingsAccountManager extends AccountManager {

 public SavingsAccount GetAccount() { ... }

}

27
Java and C# in depth

Casting and Polymorphism

Casting is C++/Java/C# jargon to denote polymorphic
assignments.

Let S be an ancestor of T (that is, T →* S)

Upcasting: an object of type T is attached to a reference of
type S

Downcasting: an object of type S is attached to a
reference of type T

class Vehicle;

class Car extends Vehicle;

Vehicle v =(Vehicle)new Car(); // upcasting

Car c = (Car)new Vehicle(); // downcasting

28
Java and C# in depth

Casting in Java

Upcasting is implicit

 For primitive types, upcasting means assigning a
“smaller” type to a “larger” compatible type

 byte to short to int to long to float to double
(long to float may actually lose precision)

 char to int

 For reference types, upcasting means assigning a
subtype to a supertype, that is:

 a subclass to superclass

 an implementation of an interface X to that interface X

 an interface X to the implementation of an ancestor of X

Downcasting must be explicit

 can raise runtime exceptions if it turns out to be
impossible

No casts are allowed for reference types outside the
inheritance hierarchy

29
Java and C# in depth

The instanceof keyword

 The instanceof keyword performs runtime checking of

the dynamic type of a reference variable

 Syntax: aVariable instanceof aType

 Is the object attached to aVariable compatible with

aType?

 Compatible means of aType or one of its subtypes

30
Java and C# in depth

Shadowing

Variables with the same name and different (but overlapping)
scopes:

 A local variable shadows an attribute with the same
name: use this to access the attribute

 A subclass attribute shadows a superclass attribute with
the same name

 Polymorphism does not apply

 if a reference is superclass type and attached object is
subclass type, the superclass variable is used

 Tip: avoid if possible (it may decrease readability)

31
Java and C# in depth

The final modifier

 final class

 Cannot be inherited from

 final attribute, argument, or local variable

 It’s a constant: cannot be redefined and must be initialized

 (If it’s a reference: the object state can change)

 final static attributes can only be initialized by block

initializers

 final (non-static) attributes can be set only once, and

must be set by every constructor of the class (whenever
initializers haven’t already set them).

 Style tip: constant names are capitalized

 final method

 Cannot be overridden

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

The object creation process

33
Java and C# in depth

The keyword super

 Enables invocation of a superclass method from within

an overriding method in a subclass

 Can be used to explicitly invoke a constructor of the

superclass (see next example)

34
Java and C# in depth

Chained constructors

 Any constructor implicitly starts by executing the
argumentless constructor of the parent class, unless:

 A specific constructor of the superclass is invoked
using super(...)

 Another specific constructor of the same class is
invoked using this(...)

 If used, super(...) or this(...) must be the
first instruction

35
Java and C# in depth

Chained constructors: example

public class CreatureCard extends Card {

 int value;

 public CreatureCard(String name){

 super(name);

 // class-specific initializations

 value = 7;

 }

 public CreatureCard(int value){

 this(“Big Monster”);

 // class-specific initializations

 this.value = value;

 }

}

36
Java and C# in depth

Object creation process

 MyClass obj = new MyClass();

(static members are initialized before)

 new allocates memory for a MyClass instance
(all attributes, including inherited ones)

 initializes all attributes to default values

If constructor references
super (explicitly or by

default):

1.Recursive call to

constructor of superclass

2.Execute MyClass’s

initializers in their textual

order

3.Execute constructor body

If constructor references
this (another constructor

X):

1. Recursive call to other

constructor X

2. Execute rest of originally

called constructor body

37
Java and C# in depth

Object creation process: example

public class Person {

 int age = 1;

}

public class Student extends Person {

 { age = 6; }

 double gpa = age/2;

 public Student() { gpa += 1.0; }

}

Person p1 = new Person(); // age = 1

Person p2 = new Student(); // age = 6, gpa = 4.0

