
Java and C# in depth
Carlo A. Furia, Marco Piccioni, and Bertrand Meyer

Chair of Software Engineering

With material from Christoph Angerer

Java: Graphical User
Interfaces (GUI)

2
Java and C# in depth

The essence of the Java Graphics API

JVM

Swing

Application

AWT 2D

3
Java and C# in depth

JVM

Swing

Application

AWT 2D

4
Java and C# in depth

Abstract Windowing Toolkit (AWT)

§  The first available API for Java GUIs"
§  Platform independent (if there are JVMs)"
§  It does not look the same on all platforms"
§  Calls native libraries on the user system"
§  Handles events, cut and paste, drag and

drop, keyboard focus, user input"
§  Still used directly for top-level containers

(frames, applets, dialogs)"

5
Java and C# in depth

AWT Components

6
Java and C# in depth

JVM

Swing

Application

AWT 2D

7
Java and C# in depth

Java 2D

Introduced in 1.2"
Basic and advanced drawing operations"
Image manipulation"
Text"
Printing"
Can be used directly, or indirectly via Swing"
Handles Swing’s rendering operations (e.g.
GUI component background and border)"

8
Java and C# in depth

The essence of the Java Graphics API

JVM

Swing

Application

AWT 2D

9
Java and C# in depth

Swing and AWT

10
Java and C# in depth

Java Swing

Introduced in 1.2"

Main Java GUI library for desktop apps"
"
Lightweight"
§  relies on 2D for graphics"
§  relies on AWT for top-level containers and

application behavior via event management"
"

11
Java and C# in depth

Swing Concepts

UI structure"
§  Top-level containers (need native support):

JFrame, JDialog, JApplet."
§  N-level containers (implemented in Java):

JPanel, JSplitPane, JTabbedPane, ..."
§  Leaf components: JButton, JTextField, JTable,

JList, JProgressBar, JScrollBar, ..."
"
UI design via layout managers"

12
Java and C# in depth

Top-level containers structure: JRootPane

Top-level containers always contain a JRootPane "
"
"
"
"

JRootPane contains JLayeredPane, a content pane,
JMenuBar, and a glass pane"
Can be used to intercept mouse clicks and paint
over multiple components"

13
Java and C# in depth

Top-level containers structure: JLayeredPane

JRootPane contains a JLayeredPane"
"
"

"
"
JLayeredPane contains and positions a content
pane, an optional menu bar, and possibly dialogs
and toolbars"
Enables Z-ordering of the contained components "

14
Java and C# in depth

Top-level containers structure: content pane

In the content pane go your visible GUI components"
"
"

"
"
JPanel is the typical content pane"
First create a JPanel, then add components to it, and
then:"
myTopLevelContainer.setContentPane(myJPanel)

"

15
Java and C# in depth

Top-level containers structure: glass pane

The glass pane sits on top of everything, fills the
entire view, and it’s by default invisible. "
"
"
"
"

Used to intercept mouse and keyboard clicks, drag &
drop, and to draw over the entire UI, especially if
there are already other components "

16
Java and C# in depth

Creating a JFrame window

public class MyFrame extends JFrame {

private JPanel contentPane;

public MyFrame(){

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setBounds(100, 100, 450, 300);

 contentPane = new JPanel();

 setContentPane(contentPane);

}

}

17
Java and C# in depth

Displaying a JFrame window

public class MyFrame extends JFrame {

public static void main(String[] args){

 EventQueue.invokeLater(new Runnable(){

 public void run(){

 try{

 MyFrame frame = new MyFrame();

 frame.setVisible(true)

 } catch (Exception e) {...}

 }});

}...}

18
Java and C# in depth

Setting up a glass pane

public class MyGlassPane extends JComponent {

@Override

protected void paintComponent(Graphics g){

 Rectangle clip = g.getClipBounds();

 g.setColor(Color.BLUE);

 g.fillRect(clip.x, clip.y, clip.width,
clip.height);

}

}

19
Java and C# in depth

Adding a glass pane on top of a JFrame

public class MyFrame extends JFrame {

private JPanel contentPane;

public MyFrame(){

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setBounds(100, 100, 450, 300);

 contentPane = new JPanel();

 setContentPane(contentPane);

 setGlassPane(new MyGlassPane());

 getGlassPane().setVisible(true);

}...}

20
Java and C# in depth

Before and after applying the glass pane

21
Java and C# in depth

Threading Concepts

Threads running in a Swing application"
§  Main thread: runs the application’s main method"
§  Toolkit thread: captures system events (mouse,

keyboard, …)"
§  Event Dispatching Thread (EDT): responsible for

executing any method that modifies a
component’s state"
§  dispatches the events captured by the toolkit

thread to the appropriate components"
§  the recommended way to interact with Swing"

22
Java and C# in depth

Caveats

Swing is not a thread-safe API. It is a single-threaded
API, and that thread is the EDT"
"
Swing should be used only on the EDT (see previous
example)"
"
Hint: don’t perform long-lasting computations or I/O
accesses in a method executed by the EDT"
"
Where do you perform these computations then?"

23
Java and C# in depth

Handling heavy computations and I/O

SwingUtilities.invokeLater(new Runnable(){
 public void run(){
 // lengthy computation
 }});

This posts a new task on the EDT by invoking "
EventQueue.invokeLater(...) "
!
From Java 6 you can use SwingWorker, a utility
class to run a task on a background thread, and post
intermediate or final results on the EDT"

24
Java and C# in depth

SwingWorker usage

For running long-running tasks in a different thread so
as to prevent the GUI from being unresponsive"

For updating GUI with the results produced by the
long-running task at the end of the task through
method done()

For updating GUI from time to time with the
intermediate results produced and published by the
task through methods publish() and process()

"
"
"
"

25
Java and C# in depth

Handling events

Observer design pattern"
§  Components maintain a list of objects

implementing listener interfaces (listeners)"
§  You can register/unregister a listener XYZ on a

component c:"
c.addXYZListener or c.removeXYZListener
§  When the component fires an event, all registered

listeners are notified using a callback"
§  The reaction code is typically in the (anonymous

inner) class implementing the listener interface"

26
Java and C# in depth

Adding a button and an associated action

public class MyFrame extends JFrame {

private JButton myButton;

public MyFrame(){...

 myButton = new JButton(“Push me!”);

 contentPane.setLayout(new FlowLayout());

 myButton.addActionListener(new ActionListener(){

 public void actionPerformed(ActionEvent e){

 myButton.setText("Works!”);

 }});

 contentPane.add(myButton);

 setContentPane(contentPane);

}...}

27
Java and C# in depth

Firing an ActionEvent

28
Java and C# in depth

Some Listeners and related Components

Event Listener" Listener methods" Register on "
ActionListener"
"

actionPerformed()" JButton, JComboBox,
JFileChooser,
MenuItem, JTextField, … "

FocusListener" focusGained(),
focusLost()"

Component"

MouseListener" mouseClicked(),
mouseEntered(),
mouseExited(),
mousePressed(),"
mouseReleased()"

Component"

MouseMotionLi
stener"

mouseDragged(),
mouseMoved()"

Component"

29
Java and C# in depth

Some more Listeners and Components

Event Listener" Listener methods" Register on "
KeyListener" keyPressed(),

keyReleased(),
KeyTyped() "

Component"

TextListener" textValueChanged()" TextComponent"

CaretListener" caretUpdate()" JTextComponent"

MenuListener" menuCanceled(),
menuDeselected(),
menuSelected()"

JMenu"

30
Java and C# in depth

Layout Managers

Used to harmonize component placement"
"
They typically decide the component size"
"
Can be composed with one another"
 "
React in a ‘predictable’ way when adding/removing
components and resizing the application window"
Absolute positioning (x, y, size) is still possible: "
contentPane.setLayout(null);

"

31
Java and C# in depth

Some Layout Managers

"
Border Layout: " " " " "5 areas"
"
"
BoxLayout:" " "single row/column"
"
GridLayout: " " " "cells are same size"
"
"
FlowLayout"

http://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html"

32
Java and C# in depth

Some more Layout Managers

CardLayout: different components at different times"
"
"
GridBagLayout:"
cells of different size"
"
"
SpringLayout: "
fine-grained control"

http://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html"

33
Java and C# in depth

Do it yourself

You can experiment with the Java GUI APIs trying the
RPN calculator assignment"
"
A nice GUI designer tool that produces clean GUI
code in the background and you may want to have a
look at is Google’s Window Builder (Eclipse plug-in):"
"
https://developers.google.com/java-dev-tools/wbpro/ "
"
"
"
"
"

"

