
Java and C# in depth
Carlo A. Furia, Marco Piccioni, and Bertrand Meyer

Chair of Software Engineering

With material from Christoph Angerer

C#: Graphical User
Interfaces (GUI)

2
Java and C# in depth

Windows Presentation Foundation (WPF)

§  2D/3D vector-based graphics, resolution
independent, rendering using HW acceleration
of graphic cards (Direct 3D)"

§  Text, typography, documents, multimedia"
§  Declarative UI with XAML "
§  Styles, templates for declarative customization"
§  Data binding"
§  Separate behavior with code-behind"
§  Needs .NET 3.0+ "

3
Java and C# in depth

Controls

§  WPF classes hosted by a window or
document, having a UI and behavior"

§  Created using XAML or code"
§  Customizable using ControlTemplate "

"

http://wpftutorial.net"

4
Java and C# in depth

Content Model

§  The type and number of items that constitute the
content of a control"

§  Some controls have just an item and type of
content (e.g. TextBox has a string as Text)"

§  Other controls can contain multiple items of
different types (e.g. Button)

"
"
"

"

http://msdn.microsoft.com/en-US/library/aa970268#Controls"

5
Java and C# in depth

XAML

§  XML file that allows creating GUIs
declaratively"
§ XML elements map to objects"
§ XML attributes map to properties and

events"
§  Used to generate code connected to the

code-behind file "

6
Java and C# in depth

XAML file for sample app (VS 2012)

File MainWindow.xaml
<Window x:Class="WpfApplication1.MainWindow"
xmlns="
http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title=”MainWindow" Height=”350" Width=“400">
<Grid>
 <Button x:Name=“button1” Content=“Push me!”
HorizontalAlignment=“Left” Margin=”159,271,0,0”
VerticalAlignment=“Top” Width=“75” Click=“ButtonClick_1”/>
</Grid>
</Window>

7
Java and C# in depth

Code-behind file for sample app

using System.Windows
namespace WpfApplication1
// Interaction logic for MainWindow.xaml
public partial class MainWindow : Window{

 public MainWindow(){
// Merges UI markup with code in this class,
//sets properties and registers event handlers

 InitializeComponent();
 }
 private void Button_Click_1 (object sender,
 RoutedEventArgs e){
 button1.Content = "It works!";
 }}

8
Java and C# in depth

9
Java and C# in depth

Windows Presentation Foundation (WPF)

§  The Window class is used for standalone
applications to create windows and dialogs"

§  The Application class encapsulates
application-scoped services:"
§ startup"
§  lifetime management"
§ shared properties"
§ shared resources "

10
Java and C# in depth

XAML Application file (VS 2012)

File App.xaml

<Application x:Class="WpfApplication1.App"
xmlns="
http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:x="
http://schemas.microsoft.com/winfx/2006/xaml"
StartupUri=“MainWindow.xaml”>

 <Application.Resources>

 </Application.Resources>
</Application>

11
Java and C# in depth

Layout

§  Recursive system to size, position and draw a
GUI element"

§  Measures and arranges a panel’s children"
§  Uses component negotiation "

1.  Control tells its parent required size/loc"
2.  Parent tells control what space it can

have "
§  WPF provides built-in layout panels"

12
Java and C# in depth

Sample Layout Panels: Canvas

§  Area within which you typically position 2D
graphic elements by explicit relative
coordinates"

§  Coordinates are relative to panel sides"
§  Z-order default of elements is as in XAML"

http://wpftutorial.net"

13
Java and C# in depth

Sample Layout Panels: StackPanel

§  Stacks child controls below or beside each
other"

§  Useful for lists"
§  Used by ComboBox, ListBox, and Menu"
§  Controls automatically resize"

!

http://wpftutorial.net"

14
Java and C# in depth

Sample Layout Panels: DockPanel

§  Area within which you arrange children
horizontally or vertically, relative to each other"

§  Child controls are aligned to the panel left,
right, top, bottom and center (last control)"

http://wpftutorial.net"

15
Java and C# in depth

Sample Layout Panels: WrapPanel

§  Child controls are positioned sequentially from
left to right "

§  Controls wrap to the next line when there is
no more space in the line"

§  Similar to stackPanel but with wrapping"
!

http://wpftutorial.net"

16
Java and C# in depth

Sample Layout Panels: Grid

§  Child controls are positioned by rows and
columns"

§  A cell can contain multiple controls"
§  A control can span over multiple cells"
§  Controls can overlap"

http://wpftutorial.net"

17
Java and C# in depth

"
Dependency Properties"

18
Java and C# in depth

Dependency Properties (DPs) in a nutshell

§  Provide a functionality extension to .NET properties"

§  Allow computing the property value using the values of
other inputs (e.g. themes, user prefs, data binding,
animations)"

§  Can implement validation, defaults, callbacks, and in
general allow dynamic behavior "

§  From the user point of view they feel like .NET props"

19
Java and C# in depth

Dependency Properties abstractions

§  DPs are backed by type DependencyProperty
§  enables registration of DPs"
§  provides identification and info about the DP"
§  as a base class enables objects to use DPs"

§  DependencyObject enables WFS’s props system"
§  base class that hosts the property"
§  stores the property returned by
DependencyProperty.Register "

§  provides get, set, clear utility methods"
§  handles prop changed notifications and callbacks"

20
Java and C# in depth

Setting and getting DPs

§  While .NET properties read from private members,
DPs are resolved dynamically when calling
GetValue() inherited from DependencyObject

§  DPs are set locally in a dictionary of keys and values
in a DependencyObject
§  the key of an entry is the name of the property
§  the value is the value to set"

21
Java and C# in depth

Dependency Property example

...in class DependencyObject..."
public static readonly DependencyProperty
IsRotatingProperty =
 DependencyProperty.Register(
 "IsRotating", typeof(Boolean),
//resource refs, callbacks, styles,
animations…
);
public bool IsRotating{
 get { return
(bool)GetValue(IsRotatingProperty); }
 set { SetValue(IsRotatingProperty,
value); }}

"

22
Java and C# in depth

Dynamic Resolution of DPs

DP values are resolved internally by following the
precedence from top to bottom:

1.  Animation"
2.  Binding expression"
3.  Local value"
4.  Custom style trigger"
5.  Custom template trigger"
6.  Custom style setter"
7.  Default style trigger"
8.  Default style setter"
9.  Inherited value"
10. Default value"

23
Java and C# in depth

Dependency Property value precedence

§  The value you get from a DP was potentially set by
any other property-based input participating in the
property system

§  The value precedence (see previous slide) helps to
have predictable interactions"

§  E.g. apply a style to all buttons’ background props, but
use locally set background for just one button (b1)"
§  b1: property set twice, but only the locally set value counts

because has precedence over style setter"
§  all other buttons: style setter applies"

24
Java and C# in depth

Advantages of Dependency Properties

§  Reduced memory footprint
Over 90% of the properties of a UI control typically
stay at their initial values. DPs only store modified
properties in the instance. The default values are
stored once within the DP

§  Value inheritance
Provide the way to compute the value of a property
based on the value of other inputs (see previous slide)

§  Change notification
DPs have a built-in change notification mechanism "

25
Java and C# in depth

Data Binding

§  An usage scenario for DPs"
§  A way to automatically update data between

GUI and business model using DPs"
§  It works in either direction, and in both as well"
§  It is the bridge between a binding target and a

binding source"
§  The Binding class is the core element"
§  The BindingExpression class maintains

the connection between the source and the
target"

26
Java and C# in depth

Data Binding components

"
"
"
"
"

Main components of the binding"
§  Binding target object "
§  Target property (must be a DP)"
§  Binding source object"
§  Path to value in the binding source to use"

http://msdn.microsoft.com/en-US/library/aa970268#Data_Binding"

27
Java and C# in depth

Data Binding example

"
"
"
"
Target object binding: TextBox "
Target object DP: TextBox.Text "
Source object binding Person"
Path: Person.Name"

http://msdn.microsoft.com/en-US/library/aa970268#Data_Binding"

28
Java and C# in depth

Data Binding example XAML

Typically done in XAML using the {Binding}
markup"
..."
<!-- Bind the TextBox to the data source
(TextBox.Text to Person.Name) -->
<TextBox Name="personNameTextBox"
Text="{Binding Path=Name}" />
...

29
Java and C# in depth

Data Binding example code behind

public partial class DataBindingWindow :
Window {

 public DataBindingWindow()

 {

 InitializeComponent();

 // Create Person data source

 // Assuming Person has property Name
 Person person = new Person();

 // Make data source available for binding

 this.DataContext = person;

 }}}

30
Java and C# in depth

Some Mono GUI toolkits

Gtk# 2.0 http://www.mono-project.com/GtkSharp "
multi-platform, binds Gtk+ and GNOME libs,
written in C with OO API, visual designer
(Mono Develop)"

Winforms http://www.mono-project.com/WinForms "
compatible with Windows.Forms "

Xamarin.Mac http://xamarin.com/mac "
to build native Cocoa apps in C#"

