rici
Chair of Software Engineering

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Java. exceptions
and genericity

Em Ziirich

Chair of Software Engineering

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Exceptions

Exceptions

Exceptions are objects
= Raise with a throw ExceptionObject Iinstruction

throw new AnExceptionClass (“ErrorInfo”) ;

= Checked exceptions

Declared in method signature:
public void foo () throws SomeCheckedException

Must be handled explicitly

= provide an exception handler (with a
try/catch/£inally block)

» propagate the exception to the caller (with a throws
declaration)

= Unchecked exceptions
May be handled, if desired

Unhandled exceptions terminate the current execution
th read Java and C# in depth

©

3

Exception class hierarchy

} Throwable |

| |
Exception } Error |
\
\
\ \
Runtime
Exception - .

Exception handlers

The scope of an exception handler is denoted by a try block

Every try block is immediately followed by zero or more catch blocks,
zero or one £inally block, or both. At least one of catch blocks and
finally block is required (otherwise, what’s the try for?)

public int foo(int b) {
try { if (b > 3) {
throw new Exception() ;
}
} catch (Exception e) { b++; }

finally { b++; }
return b;

Java and C# in depth

Exception handlers: catch blocks

©

catch blocks can be exception-specific:

catch (ExceptionType name) { /* handler */ }
= Targets exceptions whose type conforms to ExceptionType
= ExceptionType must be a descendant of Throwable
* name behaves as a local variable inside the handler block

= Acatch block oftype T cannot follow a catch block of type s |if
T < S (otherwise the T-type block would be shadowed)

Multi catch blocks (introduced in Java 7):

catch (ET1 | ET2 | ET3 name) { /* handler */ }
= Targets exceptions whose type conforms to ET1, ET2, or ET3
= ETI1, ET2, and ET3 cannot be related by subclassing
* name behaves as a constant (£inal) inside the handler block

Java and C# in depth

6

Exception handlers: catch/finally blocks

When an exception of type T is thrown within a try block:

= control is transferred to the first (in textual order) catch block whose
type T conforms to, if one exists

= then, the control is then transferred to the £inally block (if it
exists)
= finally, execution continues after the try block

When no conforming catch exists or an exception is re-thrown inside the
handler:
= After executing the £inally block, the exception propagates to the
next available enclosing handler

When a try block terminates without exceptions:
= the control is transferred to the £inally block (if it exists)
= then, execution continues after the try block

Java and C# in depth

Exception handlers: catch/finally blocks

A finally block is always executed after the try block even if no
exceptions are thrown

= Typically used to free resources

// foo() returns 2 (!)
public int foo () {
try { return 1; } finally { return 2; }

A control-flow breaking instruction (return, break, continue) inside
a finally block terminates the propagation of exceptions.

// foo() returns 2 and propagates no exception
public int foo () {
try {throw new Exception();} finally {return 2;}

}

Java and C# in depth

Exception handlers X

A catch block may contain other try blocks

From within a catch block an exception can be re-thrown:
catch (Exception e) { if (...) {throw e;} ...}

Exceptions that propagate to the main method without being handled force
termination of the program (typically, showing a trace of the call stack).

Java and C# in depth

9

Catch, handle, and re-throw: example

A method
int readNum(String fn, int n)
tries to read an n-digit integer from file with name £n.

Exceptions handle things that may go wrong:
= a file with name s doesn’t exist
= the file cannot be opened

= the file doesn’t encode an integer
= the integer has fewer than n digits

Java and C# in depth

10

Catch, handle, and re-throw: example

public int readNum(String fn, int n)
throws TooFewDigitsException, FileNotFoundException,
IOException {

int res; BufferedReader br = null;

try {
br = new BufferedReader (new FileReader (fn)) ;
String str = br.readLine();

if (str.length() < n)
throw new TooFewDigitsException(str.length());

res = Integer.parselnt(str);
}
catch (FileNotFoundException e) { throw e; }
catch (IOException e) { throw e; }
catch (NumberFormatException e) { res = 0; }
finally { if (br !'= null) br.close(); }

return res; }

Java and C# in depth
11

Catch, handle, and re-throw: example

Here’s how a client may use readNum:

int readInt;
String aFileName;

try {
readInt = n.readNum(aFileName, 5);

}

catch (TooFewDigitsException e) {
try { readInt = n.readNum(FileName, e.numRead); }
catch (Exception e) {System.out.println(“Give up!”);}

}

catch (Exception e) { System.out.println(“IO error"),; }

Java and C# in depth
12

: “
Try with resources

Starting with Java 7, a try may also list some resources that are
automatically closed after the block terminates (as with a £inally block).

try (
FileOutputStream out = new FileOutputStream(“o.txt") ;
FileInputStream in = new FileInputStream(“i.txt");
|

// use out and in
} catch (IOException e) { /* Couldn’'t open files */ }

catch and £inally are completely optional in try-with-resources blocks
(but checked exceptions must still be caught or propagated).

A class must implement interface java.lang.AutoCloseable to be
usable in a try-with-resources block.

= Basically, it needs a close () method

Java and C# in depth

13

Checked vs. unchecked exceptions

Checked exceptions are quite unique to Java

= C++ and C#, in particular, have only the equivalent of
unchecked exceptions

Which type of exception should you use in your Java
programs?

Java orthodoxy: checked exceptions should be the norm
Rationale for preferring checked exceptions:

= exceptions usually carry information the client of a class
should be informed about

= a method throwing unchecked exceptions is similar to a
method with undocumented behavior

= clients may run into all sorts of troubles if they receive
unexpected exceptions

Java and C# in depth
14

Checked vs. unchecked exceptions

Disadvantages of using checked exceptions extensively:
= |ots of exception handling code to write
» lazy programmer’s shortcut: empty catch blocks

= many catch blocks pollute code and decrease
readability

= complex unwinding of the call stack to decide which
exceptions to propagate and which to handle

= new exceptions change the interface of methods

Java and C# in depth
15

Checked vs. unchecked exceptions X

How to strike a balance:

= As a norm, checked exceptions should replace error codes
when the client should check the return code

» Use a checked exception if the caller can do something
sensible with the exception

= useless with fatal errors whose causes are outside of the
client’s influence

= Document the usage of unchecked exceptions

* Don’t use exceptions (checked or unchecked) when you
should use assertions (contracts)

= see examples in C# slides of this class

Java and C# in depth

16

m Ziirich

Chair of Software Engineering

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Genericity in Java

Generics

Java’s genericity mechanism, available since Java 5.0

Most common use:
= Use (and implement) generic type-safe containers

Arraylist<String> safeBox = new ArrayList<String>() ;

= Compile-time type-checking is enforced

More sophisticated uses:
= Custom generic classes and methods

= Bounded genericity (also called constrained genericity)
public <T extends Interfacel & Interface2> T test (T x)

Java and C# in depth

18

. “)
Generic classes

A generic class Is a class parameterized w.r.t. one or more
generic types.

public class Cell<T> {
private T val;
public T getVal() { return val; }
public void setVal(T v) { val = v; }

To Instantiate a generic class we must provide an actual type
for the generic parameters.

Cell<String> c = new Cell<String>();

Java and C# in depth

19

. “)
Generic classes

The generic parameters of a generic class may constrain the
valid actual types.

public class Cell<T extends S> { ... }

This Is valid only If X is a subtype of S:
Cell<X> c = new Cell<X>();

The constrains may involve multiple types.
public class C<T extends String & Iterable>

This is valid only if Y is a subtype of both String and
Iterable:

C<Y> c new C<Y>() ;

Java and C# in depth

20

.. .)
Genericity before generics

Before generics were available, using class Object was the
way to achieve generic implementations.

public class 0ldCell {
private Object wval;
public Object getVal() { return wval; }
public void setVal (Object v) { val = v; }}
Requires explicit castings, with major problems:
= verbose code
= no compile-time checks
O0ldCell ¢ = new 0ldCell () ;
c.setVal (YA string”); // upcasting
String s = (String) c.getVal(); // downcasting
Car ¢ = (Car) c.getval(); // runtime error

Java and C# in depth
21

Diamond operators and raw types

©

When creating an instance of a generic class, the compiler is
often able to infer the generic type from the context. In such
cases, we can use the diamond operator.

Cell<String> c¢ = new Cell<>();

IS equivalent to:
Cell<String> c = new Cell<String>();

Generic classes can be instantiated as raw types, without
providing any generic parameter. Raw types correspond to the
old type-unsafe generic classes:

Cell ¢ = new Cell();

c.setVal(l2); // warning of unsafe behavior

Cell<String> c = new Cell();
// not equivalent to new Cell<>()!

and C# in depth

22

Generics: features and limitations

Generic classes are translated into ordinary classes by the compiler:
= Process called “type erasure”
= The generic type is replaced by Object

= Casts are added as needed, after checking that they are type-safe

Limitations of type erasure:
= Can’t instantiate generic parameter with primitive types
» but can use wrapper classes

= At runtime you cannot tell the difference between
ArrayList<Integer> and ArrayList<String>

= EXxception classes cannot be generic classes

= Can’t create objects of the generic type
» put can assign the value null to a variable of generic type

= Arrays with elements of a generic type parameter cannot be created
= A static member cannot reference a generic type parameter

Java and C# in depth

23

Generics and inheritance

Let S be a subtype of T (i.e. S < T)

There 1s no inheritance relation between:
SomeGenericClass<S> and SomeGenericClass<T>

In particular: the former is not a subtype of the latter

However, let AClass be a non-generic type:

= T<AClass> IS a subtype of T
= T denotes the raw type derived from the generic class T

= S<AClass> IS a subtype of T<AClass>

Java and C# in depth

©

24

Why subtyping with generics is tricky

Consider a method of class F:

public static void foo (LinkedList<Vehicle> x) {
// add a Truck to the end of list ’'x’
x.add (new Truck()) ;

If LinkedList<Car> were a subtype of
LinkedList<Vehicle>, this would be valid code:

LinkedList<Vehicle> cars = new LinkedList<Car>() ;
cars.add (new Car())
F.foo(cars) ;

But now a LinkedList<Car> would contain a Truck, which is not
a Car!

Java and C# in depth

0.

25

©

Wildcards

Give some polymorphic features to generics

Unbounded wildcards: Collection<?>
= “Collection of unkwnown(s)”
= [t is a super-type of Collection<T>, for any class T

= A method can read elements from a wildcard collection
argument

» Can assign elements of the collection to references of type
Object

= Cannot add new elements to the collection (see previous
example)

* But it can add new null entries

* pbecause null is a subtype of every other type

Java and C# in depth

26

Bounded wildcards “

Bounded wildcards with upper bound:
Collection<? extends X>

= |t is a super-type of Collection<T>, for any subclass T
of X

= A method can read elements from the wildcard collection
argument

» Can assign elements of the collection to references of type
X

= Cannot add new elements to the collection

» But it can add new null entries
* pecause null is a subtype of every other type

Java and C# in depth
27

Upper-bounded wildcards: example

Consider the following hierarchy of classes:

~____—{ Shape j«—_
Circle Rectangle

What should be the signature of a method drawShapes that
takes a list of Shape objects and draws all of them?

= drawShapes (List<Shape> shapes)

= this doesn’t work on a List<Circle>, which is not a
subtype of List<Shape>

= drawShapes(List<? extends Shape> shapes)

= this works on List<Shape>, List<Circle>, and
List<Rectangle>, but doesn’t work on List<Object>

(correctly, as drawing is not defined for something that
may nOt be a. Shape) Java and C# in depth

©

28

Bounded wildcards “

Bounded wildcards with lower bound:
Collection<? super X>

= |t is a super-type of Collection<T>, for any superclass
T of X

= A method can add elements to the collection (i.e., through
the wildcard collection argument)

= Cannot assign elements of the collection to references of
type X

* But it can read elements and assign them to reference of
type Object
* pecause Object Is a supertype of every other type

Lower bounds are often used for write-only resources such as
log streams.

Java and C# in depth

29

Lower-bounded wildcards N

Consider a class for a list, including a sort method:
class MySortedList <T> implements List

{ . ..
void sort (Comparator <T> cmp) { ... }

}

= MySortedList<String> sl =
new MySortedList<>() ;
Comparator<String> mc = ... ;
Comparator<Object> oc = ... ;

= Valid call: sl.sort(mec) ;
= [nvalid call: sl.sort(oc) ;
= Comparator<Object> Isincompatible with
Comparator<String>

= Solution: use a lower-bounded wildcard in sort’s signature
void sort (Comparator <? super T> cmp)

Java and C# in depth

30

. “
Generic methods

They are useful where wildcards fall short:
adding elements to a generic collection

Example: a method that assigns the elements in an array to a
generic collection

static void a2c(Object[] a, Collection<?> c¢c) {
for (Object o : a) { c.add(o); /* Error */ } }

= We will know whether the type of o’'s elements is
compatible with the type of ¢’s elements only at runtime

Java and C# in depth

31

. “
Generic methods

Example: a method that assigns the elements in an array to a
generic collection

Generic methods come to the rescue (notice the position of the
generic parameter):
static <G> void a2c(G[] a, Collection<G> c) {

for (G o : a) { c.add(o); /* OK */ } }

This is how client use the generic method.

String[] arr = {“Hello”, “world”, “!”};
ArrayList<Object> 1lst = new ArrayList<>();
a2c (arr, 1lst);

The actual generic parameter is inferred from context.

Java and C# in depth

32

. “
Collections

A classic example of separating interface from implementation
Some useful library interfaces from java.util:
= Collection<E>
" boolean add(E el)
» returns whether the collection actually changed

= yvoid clear ()
= remove all elements in the collection
" Tterator<E> iterator ()
= returns an iterator over the collection
= Tterator<kE>
" E next ()

" void remove ()

* removes the last element returned by the iterator

Java and C# in depth

33

Collections: some implementations

ArrayList: indexed, dynamically growing

LinkedList: ordered, efficient insertion and removal

HashSet: unordered, rejects duplicates

TreeSet: ordered, rejects duplicates

HashMap: key/value associations

TreeMap: key/value associations, sorted keys

Java an d C# in depth
34

Java collections framework

<<interfacess <<interfacess

" Collection " Map

z<interfaces» <<interface>»

" Sat 1" SortedMap

<<interfaces»

1" SortedSet

Figure 1 Collections Framework major interfaces

Java and C# in depth

35

Java collections framework

ceinterfagess

1" Collection

ceinterfacess
1" List
Fa¥

 Mbstractlist |

f

© vetr

Figure 3 | =t cateqory

" AbstractSeq uentialLi5t|

T

| LinkedList

| Arraylist |

Java and C# in depth

36

Java collections framework

ccinterfacess

" Map | |
* Dictionary
c<interfaces» : : :/
" SortedMap AbstractMap Hashtable
P [\
} Properties

TreeMap_ Ha5hMa|J_ _ WEahHa5hMap|

Java and C# in depth

Java collections framework

=ginterfacess

1* Collection

i
i

| i AbstractCollection

|

S \ et

.
.

"'a

"a
".l
’
El
-
’
Ed
L3
)
.
;
P
! -
#
‘_i
TreeSet .
r
.
-
.
.
;
.
)
£l
&
’
Ed
[

" LinkedHashset|

Fig-“'ﬂ 2 Set daregory

Java and C# in depth

38

