
Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Java: exceptions
and genericity

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Exceptions

3
Java and C# in depth

Exceptions

Exceptions are objects

 Raise with a throw ExceptionObject instruction

 throw new AnExceptionClass(“ErrorInfo”);

 Checked exceptions

Declared in method signature:

 public void foo() throws SomeCheckedException

Must be handled explicitly

 provide an exception handler (with a
try/catch/finally block)

 propagate the exception to the caller (with a throws

declaration)

 Unchecked exceptions

May be handled, if desired

Unhandled exceptions terminate the current execution

thread

4
Java and C# in depth

Exception class hierarchy

Throwable

Runtime

Exception

Exception Error

unchecked

unchecked
checked

. . .

5
Java and C# in depth

Exception handlers

The scope of an exception handler is denoted by a try block

Every try block is immediately followed by zero or more catch blocks,

zero or one finally block, or both. At least one of catch blocks and

finally block is required (otherwise, what’s the try for?)

 public int foo(int b) {

 try { if (b > 3) {

 throw new Exception();

 }

 } catch (Exception e) { b++; }

 finally { b++; }

 return b;

 }

6
Java and C# in depth

Exception handlers: catch blocks

catch blocks can be exception-specific:

 catch (ExceptionType name) { /* handler */ }

 Targets exceptions whose type conforms to ExceptionType

 ExceptionType must be a descendant of Throwable

 name behaves as a local variable inside the handler block

 A catch block of type T cannot follow a catch block of type S if

T ≤ S (otherwise the T-type block would be shadowed)

Multi catch blocks (introduced in Java 7):

 catch (ET1 | ET2 | ET3 name) { /* handler */ }

 Targets exceptions whose type conforms to ET1, ET2, or ET3

 ET1, ET2, and ET3 cannot be related by subclassing

 name behaves as a constant (final) inside the handler block

7
Java and C# in depth

Exception handlers: catch/finally blocks

When an exception of type T is thrown within a try block:

 control is transferred to the first (in textual order) catch block whose

type T conforms to, if one exists

 then, the control is then transferred to the finally block (if it

exists)

 finally, execution continues after the try block

When no conforming catch exists or an exception is re-thrown inside the

handler:

 After executing the finally block, the exception propagates to the

next available enclosing handler

When a try block terminates without exceptions:

 the control is transferred to the finally block (if it exists)

 then, execution continues after the try block

8
Java and C# in depth

Exception handlers: catch/finally blocks

A finally block is always executed after the try block even if no

exceptions are thrown

 Typically used to free resources

 // foo() returns 2 (!)

 public int foo() {

 try { return 1; } finally { return 2; }

 }

A control-flow breaking instruction (return , break , continue) inside

a finally block terminates the propagation of exceptions.

 // foo() returns 2 and propagates no exception

 public int foo() {

 try {throw new Exception();} finally {return 2;}

 }

9
Java and C# in depth

Exception handlers

A catch block may contain other try blocks

From within a catch block an exception can be re-thrown:
 catch (Exception e) { if (...) {throw e;} ...}

Exceptions that propagate to the main method without being handled force

termination of the program (typically, showing a trace of the call stack).

10
Java and C# in depth

Catch, handle, and re-throw: example

A method
 int readNum(String fn, int n)

tries to read an n-digit integer from file with name fn.

Exceptions handle things that may go wrong:

 a file with name s doesn’t exist

 the file cannot be opened

 the file doesn’t encode an integer

 the integer has fewer than n digits

11
Java and C# in depth

Catch, handle, and re-throw: example

public int readNum(String fn, int n)

throws TooFewDigitsException, FileNotFoundException,

 IOException {

 int res; BufferedReader br = null;

 try {

 br = new BufferedReader(new FileReader(fn));

 String str = br.readLine();

 if (str.length() < n)

 throw new TooFewDigitsException(str.length());

 res = Integer.parseInt(str);

 }

 catch (FileNotFoundException e) { throw e; }

 catch (IOException e) { throw e; }

 catch (NumberFormatException e) { res = 0; }

 finally { if (br != null) br.close(); }

 return res; }

12
Java and C# in depth

Catch, handle, and re-throw: example

Here’s how a client may use readNum:

int readInt;

String aFileName;

try {

 readInt = n.readNum(aFileName, 5);

}

catch (TooFewDigitsException e) {

 try { readInt = n.readNum(FileName, e.numRead); }

 catch (Exception e) {System.out.println(“Give up!”);}

}

catch (Exception e) { System.out.println(“IO error"); }

13
Java and C# in depth

Try with resources

Starting with Java 7, a try may also list some resources that are

automatically closed after the block terminates (as with a finally block).

 try (

 FileOutputStream out = new FileOutputStream(“o.txt");

 FileInputStream in = new FileInputStream(“i.txt");

) {

 // use out and in

 } catch (IOException e) { /* Couldn’t open files */ }

catch and finally are completely optional in try-with-resources blocks

(but checked exceptions must still be caught or propagated).

A class must implement interface java.lang.AutoCloseable to be

usable in a try-with-resources block.

 Basically, it needs a close() method

14
Java and C# in depth

Checked vs. unchecked exceptions

Checked exceptions are quite unique to Java

 C++ and C#, in particular, have only the equivalent of

unchecked exceptions

Which type of exception should you use in your Java

programs?

Java orthodoxy: checked exceptions should be the norm

Rationale for preferring checked exceptions:

 exceptions usually carry information the client of a class

should be informed about

 a method throwing unchecked exceptions is similar to a

method with undocumented behavior

 clients may run into all sorts of troubles if they receive

unexpected exceptions

15
Java and C# in depth

Checked vs. unchecked exceptions

Disadvantages of using checked exceptions extensively:

 lots of exception handling code to write

 lazy programmer’s shortcut: empty catch blocks

 many catch blocks pollute code and decrease

readability

 complex unwinding of the call stack to decide which

exceptions to propagate and which to handle

 new exceptions change the interface of methods

16
Java and C# in depth

Checked vs. unchecked exceptions

How to strike a balance:

 As a norm, checked exceptions should replace error codes

when the client should check the return code

 Use a checked exception if the caller can do something

sensible with the exception

 useless with fatal errors whose causes are outside of the

client’s influence

 Document the usage of unchecked exceptions

 Don’t use exceptions (checked or unchecked) when you

should use assertions (contracts)

 see examples in C# slides of this class

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Genericity in Java

18
Java and C# in depth

Generics

Java’s genericity mechanism, available since Java 5.0

Most common use:

 Use (and implement) generic type-safe containers
ArrayList<String> safeBox = new ArrayList<String>();

 Compile-time type-checking is enforced

More sophisticated uses:

 Custom generic classes and methods

 Bounded genericity (also called constrained genericity)
 public <T extends Interface1 & Interface2> T test(T x)

19
Java and C# in depth

Generic classes

A generic class is a class parameterized w.r.t. one or more

generic types.

 public class Cell<T> {

 private T val;

 public T getVal() { return val; }

 public void setVal(T v) { val = v; }

}

To instantiate a generic class we must provide an actual type
for the generic parameters.

 Cell<String> c = new Cell<String>();

20
Java and C# in depth

Generic classes

The generic parameters of a generic class may constrain the

valid actual types.

 public class Cell<T extends S> { ... }

This is valid only if X is a subtype of S:

 Cell<X> c = new Cell<X>();

The constrains may involve multiple types.

 public class C<T extends String & Iterable>

This is valid only if Y is a subtype of both String and

Iterable:

 C<Y> c = new C<Y>();

21
Java and C# in depth

Genericity before generics

Before generics were available, using class Object was the

way to achieve generic implementations.

 public class OldCell {

 private Object val;

 public Object getVal() { return val; }

 public void setVal(Object v) { val = v; }}

Requires explicit castings, with major problems:

 verbose code

 no compile-time checks

OldCell c = new OldCell();

c.setVal(“A string”); // upcasting

String s = (String) c.getVal(); // downcasting

Car c = (Car) c.getVal(); // runtime error

22
Java and C# in depth

Diamond operators and raw types

When creating an instance of a generic class, the compiler is

often able to infer the generic type from the context. In such

cases, we can use the diamond operator.

 Cell<String> c = new Cell<>();

is equivalent to:

 Cell<String> c = new Cell<String>();

Generic classes can be instantiated as raw types, without

providing any generic parameter. Raw types correspond to the

old type-unsafe generic classes:

 Cell c = new Cell();

 c.setVal(12); // warning of unsafe behavior

 Cell<String> c = new Cell();

 // not equivalent to new Cell<>()!

23
Java and C# in depth

Generics: features and limitations

Generic classes are translated into ordinary classes by the compiler:

 Process called “type erasure”

 The generic type is replaced by Object

 Casts are added as needed, after checking that they are type-safe

Limitations of type erasure:

 Can’t instantiate generic parameter with primitive types

 but can use wrapper classes

 At runtime you cannot tell the difference between
ArrayList<Integer> and ArrayList<String>

 Exception classes cannot be generic classes

 Can’t create objects of the generic type

 but can assign the value null to a variable of generic type

 Arrays with elements of a generic type parameter cannot be created

 A static member cannot reference a generic type parameter

24
Java and C# in depth

Generics and inheritance

Let S be a subtype of T (i.e. S ≤ T)

There is no inheritance relation between:

 SomeGenericClass<S> and SomeGenericClass<T>

In particular: the former is not a subtype of the latter

However, let AClass be a non-generic type:

 T<AClass> is a subtype of T

 T denotes the raw type derived from the generic class T

 S<AClass> is a subtype of T<AClass>

25
Java and C# in depth

Why subtyping with generics is tricky

Consider a method of class F:

public static void foo(LinkedList<Vehicle> x){

 // add a Truck to the end of list ’x’

 x.add(new Truck());

}

If LinkedList<Car> were a subtype of

LinkedList<Vehicle>, this would be valid code:

 LinkedList<Vehicle> cars = new LinkedList<Car>();

 cars.add(new Car());

 F.foo(cars);

But now a LinkedList<Car> would contain a Truck, which is not

a Car!

26
Java and C# in depth

Wildcards

Give some polymorphic features to generics

Unbounded wildcards: Collection<?>

 “Collection of unkwnown(s)”

 It is a super-type of Collection<T>, for any class T

 A method can read elements from a wildcard collection

argument

 Can assign elements of the collection to references of type
Object

 Cannot add new elements to the collection (see previous

example)

 But it can add new null entries

 because null is a subtype of every other type

27
Java and C# in depth

Bounded wildcards

Bounded wildcards with upper bound:
Collection<? extends X>

 It is a super-type of Collection<T>, for any subclass T

of X

 A method can read elements from the wildcard collection

argument

 Can assign elements of the collection to references of type
X

 Cannot add new elements to the collection

 But it can add new null entries

 because null is a subtype of every other type

28
Java and C# in depth

Upper-bounded wildcards: example

Consider the following hierarchy of classes:

What should be the signature of a method drawShapes that

takes a list of Shape objects and draws all of them?

 drawShapes(List<Shape> shapes)

 this doesn’t work on a List<Circle>, which is not a

subtype of List<Shape>

 drawShapes(List<? extends Shape> shapes)

 this works on List<Shape>, List<Circle>, and

List<Rectangle>, but doesn’t work on List<Object>

(correctly, as drawing is not defined for something that
may not be a Shape)

Shape

Circle Rectangle

29
Java and C# in depth

Bounded wildcards

Bounded wildcards with lower bound:
Collection<? super X>

 It is a super-type of Collection<T>, for any superclass

T of X

 A method can add elements to the collection (i.e., through

the wildcard collection argument)

 Cannot assign elements of the collection to references of
type X

 But it can read elements and assign them to reference of
type Object

 because Object is a supertype of every other type

Lower bounds are often used for write-only resources such as
log streams.

30
Java and C# in depth

Lower-bounded wildcards

Consider a class for a list, including a sort method:
class MySortedList <T> implements List

{ ...

 void sort(Comparator <T> cmp) { ... }

 ...

}

 MySortedList<String> sl =

 new MySortedList<>();

Comparator<String> mc = ... ;

Comparator<Object> oc = ... ;

 Valid call: sl.sort(mc);

 Invalid call: sl.sort(oc);

 Comparator<Object> is incompatible with

Comparator<String>

 Solution: use a lower-bounded wildcard in sort’s signature

void sort(Comparator <? super T> cmp)

31
Java and C# in depth

Generic methods

They are useful where wildcards fall short:

adding elements to a generic collection

Example: a method that assigns the elements in an array to a

generic collection

static void a2c(Object[] a, Collection<?> c) {

 for (Object o : a) { c.add(o); /* Error */ } }

 We will know whether the type of o’s elements is

compatible with the type of c’s elements only at runtime

32
Java and C# in depth

Generic methods

Example: a method that assigns the elements in an array to a

generic collection

Generic methods come to the rescue (notice the position of the

generic parameter):

static <G> void a2c(G[] a, Collection<G> c) {

 for (G o : a) { c.add(o); /* OK */ } }

This is how client use the generic method.

String[] arr = {“Hello”, “world”, “!”};

ArrayList<Object> lst = new ArrayList<>();

a2c(arr, lst);

The actual generic parameter is inferred from context.

33
Java and C# in depth

Collections

A classic example of separating interface from implementation

Some useful library interfaces from java.util:

 Collection<E>

 boolean add(E el)

 returns whether the collection actually changed

 void clear()

 remove all elements in the collection

 Iterator<E> iterator()

 returns an iterator over the collection

 Iterator<E>

 E next()

 void remove()

 removes the last element returned by the iterator

34
Java and C# in depth

Collections: some implementations

 ArrayList: indexed, dynamically growing

 LinkedList: ordered, efficient insertion and removal

 HashSet: unordered, rejects duplicates

 TreeSet: ordered, rejects duplicates

 HashMap: key/value associations

 TreeMap: key/value associations, sorted keys

35
Java and C# in depth

Java collections framework

36
Java and C# in depth

Java collections framework

37
Java and C# in depth

Java collections framework

38
Java and C# in depth

Java collections framework

