
Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Java: concurrency

2
Java and C# in depth

Outline

§  Java threads
§  thread implementation
§  sleep, interrupt, and join
§  threads that return values

§  Thread synchronization
§  implicit locks and synchronized blocks
§  synchronized methods
§  producer/consumer example

§  Other concurrency models
§  executors and thread pools
§  explicit locks and semaphores
§  thread-safe collections
§  fork/join parallelism

Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Java threads

4
Java and C# in depth

Java threads

Java’s concurrency model is based on threads
§  implemented natively in the JVM

Threads are created by instantiating class Thread
§  Each instance is associated with a class providing the

code associated with the thread
Two ways to provide the class code

§  Write a class that implements interface Runnable
§  Write a class that inherits from class Thread

We focus on the first solution, which is a bit more flexible
§  Why?

5
Java and C# in depth

Implementing interface Runnable

Any implementation of Runnable must implement
method run().
public class DumbThread implements Runnable {

 String id;

 public DumbThread(String id) {
 this.id = id;
 }

 public void run() {
 // do something when executed
 System.out.println("This is thread " + id);
 }

}

6
Java and C# in depth

Starting a thread

Create a Thread object
 Thread mt = new Thread(new DumbThread(“mt”));

Start its execution (calls run())
 mt.start();

Optionally, wait for it to terminate
 mt.join(); // wait until mt terminates

 System.out.println(
 "The thread has

terminated");

7
Java and C# in depth

Putting a thread to sleep

The sleep(int t) static method suspends the thread in
which it is invoked for t milliseconds, or until an interrupt is
received

 Thread.sleep(2000); // suspend for 2 seconds

§  sleep throws an InterruptedException if an
interrupt occurs

§  even if no interrupt occurs, the timing may be more or
less precise according to the real-time guarantees of the
running JVM

8
Java and C# in depth

Threads that return values

The generic interface Callable<G> is a variant of
Runnable for threads returning values of type G.

§  must implement method call()

import java.util.concurrent.*;

public class CalThread implements Callable<String> {
 String id;
 public CalThread(String id) { this.id = id; }
 public String call() {
 return “Thread with id: “ + id;
 }

}

Callable objects are run using executors (see later)

Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Thread synchronization

10
Java and C# in depth

Implicit locks and synchronized blocks
Synchronized blocks (a.k.a. synchronized statements) support
synchronization based on locks.

§  blocks of statements guarded by synchronized
§  the lock itself can be any object (including this)
§  locking/unlocking is implicit when entering/exiting the

block
§  named “intrinsic locks”
§  useful to define critical regions and fine-grained

synchronization

11
Java and C# in depth

Implicit locks and synchronized blocks

Synchronized blocks (a.k.a. synchronized statements) support
synchronization based on locks.

// s must be accessed in mutual exclusion
private int s;

// dict is used read-only, so no concurrency problems
private LinkedList<String> dict;

public String decrement_and_lookup() {
 // critical region
 synchronized(this) { if (s > 0) { s = s - 1; } }
 // non-critical region
 return dict.get(s);

}

12
Java and C# in depth

Synchronized methods

Java implements monitors as synchronized methods.

When a thread is executing a synchronized method for an

object, all other threads executing synchronized methods
on the same object wait (i.e., they block execution).
§  it is as if the method acquires an implicit lock on the

object and does not release it until it’s done

13
Java and C# in depth

Synchronized methods

Java implements monitors as synchronized methods
§  synchronized methods coordinate with the primitives

§  wait: suspend and release the lock until some thread
does a notify or notifyAll

§  notify: resume one suspended thread (chosen
nondeterministically), which becomes ready for
execution when possible

§  notifyAll: resume all suspended threads, which
become ready for execution when possible

§  There is no guarantee that notifications to waiting threads
are fair

14
Java and C# in depth

Thread states

New
Thread Ready

Dead

Waiting
start() wait()

sleep()

computation
terminates

new

notify()
notifyAll()

15
Java and C# in depth

From running to waiting

...

wait();
...

...

wait();
...

...

wait();
...

...

wait();
...

...

wait();
...

...

wait();
x += 1;

Waiting threads Running thread

...

wait();
...

...

wait();
...

...

wait();
...

...

wait();
...

...

x = 3;

foo(x);

Ready threads current instruction
1

2

3

16
Java and C# in depth

From waiting to ready

...

notify();
...

...

wait();
...

...

wait();
...

...

wait();
...

...

wait();
...

...

wait();
x += 1;

Waiting threads Running thread

...

wait();
...

...

wait();
...

...

wait();
...

...

wait();
...

...

x = 3;

foo(x);

Ready threads current instruction
1

2

17
Java and C# in depth

The producer-consumer problem

Two threads, the Producer and the Consumer, work
concurrently on a shared Buffer of bounded size
The Producer puts new messages in the buffer

§  if the buffer is full, the Producer must wait until the
Consumer takes some messages

§  the Producer also signals the last message
The Consumer takes messages from the buffer

§  if the buffer is empty, the Consumer must wait until the
Producer puts some new messages

§  the Consumer terminates after the last message
Consistent access to the Buffer requires locks and
synchronization
One way is to make Buffer a monitor class (with
synchronized methods)

18
Java and C# in depth

The main class

public class ProducerConsumer {

 public static void Main(String[] args) {
 // create a buffer of size 3
 Buffer b = new Buffer(3);
 // start the producer
 (new Thread(new Producer(b, “END”))).start();
 // start the consumer
 (new Thread(new Consumer(b, “END”))).start();
 }

}

19
Java and C# in depth

The shared Buffer (1/3)

import java.util.*;

public class Buffer {

 public Buffer(int max_size) {
 this.max_size = max_size;
 this.messages = new LinkedList<String>();
 }

 // buffer of messages, managed as a queue
 private LinkedList<String> messages;
 // maximum number of elements in the buffer
 private int max_size;

20
Java and C# in depth

The shared Buffer (2/3)

 public synchronized String take() {
 while (messages.size() == 0) {
 wait();
 // may throw InterruptedException
 }
 // now the buffer is not empty
 // and we have exclusive access to it
 String m = messages.remove();
 // any thread waiting for a slot in the buffer
 notifyAll();
 // return the message on top of the buffer
 return m;
 }

21
Java and C# in depth

The shared Buffer (3/3)

 public synchronized void put(String msg) {
 while (messages.size() == max_size) {
 wait();
 // may throw InterruptedException
 }
 // now the buffer has at least an empty slot
 // and we have exclusive access to it
 messages.offer(msg);
 // any thread waiting for a message to take
 notifyAll();
 }

} // end of class Buffer

22
Java and C# in depth

The Producer (1/2)

public class Producer implements Runnable {

 // reference to the shared buffer
 private Buffer b;
 // the last message to be sent
 private String endMsg;

 // set the reference to the buffer and endMsg
 public Producer(Buffer b, String endMsg) {
 this.b = b;
 this.endMsg = endMsg;
 }

23
Java and C# in depth

The Producer (2/2)
 public void run() {

 // work for 20 turns
 for (int i = 0; i < 20; i++) {
 // put a message in the buffer

 b.put(Integer.toString(i));
 }
 // last message signals end
 b.put(endMsg);
 }

}

24
Java and C# in depth

The Consumer (1/2)

public class Consumer implements Runnable {

 // reference to the shared buffer
 private Buffer b;
 // the last message to be sent
 private String endMsg;

 // set the reference to the buffer and endMsg
 public Consumer(Buffer b, String endMsg) {
 this.b = b;
 this.endMsg = endMsg;
 }

25
Java and C# in depth

The Consumer (2/2)

 public void run() {
 String m = “”; // assume endMsg != “”

 // work until endMsg is received
 for (int i = 0; !m.equals(endMsg); i++) {
 // take a message from the buffer

 m = b.take();
 System.out.println(
 "Consumer has consumed message: " + m);
 }
 }

}

Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Other concurrency models

27
Java and C# in depth

Concurrency and performance

Thread creation is time-consuming
§  massive thread creation can annihilate responsiveness
§  Java’s solution: executors and thread pools

Synchronized blocks and methods are not very efficient

§  Java’s solution
§  explicit locks (lightweight)
§  atomic variables (semaphores)

Tip: don’t forget the efficiency/abstraction trade-off

28
Java and C# in depth

Concurrency and correctness

Programming thread-safe data structures is error-prone
§  Java’s solution: concurrent collections

Threads and monitors are too general for straightforward
parallel computation

§  Java’s solution: fork/join tasks

Tip: don’t forget the efficiency/abstraction trade-off

29
Java and C# in depth

Executors and thread pools
Executors are object services that run threads
Thread pools are an efficient way of implementing executors

§  maintain a pool of worker threads
§  when a client requests a new task to run, preempt one of

the available worker threads and assign it to the task
§  no creation overhead upon task invocation

Java has three interfaces for the services of an executor
§  Executor: defines executor method for Runnable

objects
§  ExecutorService: supports Runnable and
Callable objects

§  ScheduledExecutorService: supports scheduled
execution (at a given time)

30
Java and C# in depth

Class java.util.concurrent.Executors

This class is an object factory for several efficient
implementations of executors (mostly with thread pools)
§  newFixedThreadPool: returns an executor that uses a

thread pool of fixed size
§  newCachedThreadPool: returns an executor that uses

a thread pool of variable size
§  use submit to send Runnable or Callable objects

to be executed

Class Executors also provide implementations of
ScheduledExecutionService

31
Java and C# in depth

Without executors

Thread t1 = new
 Thread(new T_a());

Thread t2 = new
 Thread(new T_a());

Thread t3 = new
 Thread(new T_b());

t1.start();
t2.start();
t3.start();

With executors

ExecutorService e =
Executors.newCachedThre
adPool();

t1 = new T_a();
t2 = new T_a();
t3 = new T_b();

e.submit(t1);
e.submit(t2);
e.submit(t3);

Executors vs. standard thread creation

32
Java and C# in depth

Executing a Callable object

§  You can submit a Callable object to an executor
§  The executor returns a Future object, used to read the

result of the execution returned by the thread

ExecutorService e = new CachedThreadPool();

Callable<G> t = new aCallableClassReturningG();
Future<G> f = e.submit(t);
G result = f.get(); // may throw an exception

33
Java and C# in depth

Explicit locks
Java locks in package java.util.concurrent.lock
provide:

§  explicit locking mechanisms:
§  lock: acquire the lock if available, and wait until it

becomes available otherwise
§  lockInterruptibly: try to lock, but waiting can be

interrupted
§  tryLock:

§  if lock available, acquire it immediately and return true
§  if lock not available, return false (and don’t wait)

§  unlock: release the lock
§  more complex reentrant locking mechanisms

§  wait for a specific signal or condition
§  query the lock to know how many threads are waiting
§  ...

34
Java and C# in depth

Atomic variables

Java’s implementation of semaphore-like objects
§  in java.util.concurrent.atomic

// shared variable, initialized to 0
AtomicInteger s = new AtomicInteger(0);

...
// this is equivalent to an atomic s++
s.incrementAndGet();
...
// this is equivalent to an atomic s--
s.decrementAndGet();

35
Java and C# in depth

Concurrent collections

Java provides several implementations of data structures that
are thread-safe

§  LinkedBlockingQueue
§  ArrayBlockingQueue
§  ConcurrentHashMap
§  ...

A thread-safe list implementation is also provided among the
standard collections in java.utils.Collections

public static List synchronizedList(List list)

36
Java and C# in depth

Fork/join parallelism
Fork/join is a straightforward model of parallel computation
suitable to implement divide and conquer algorithms exploiting
parallelism.

X = instance to be solved;
if (X is small) {

 solve X;
} else {

 split X into X1 and X2;
 spawn a new thread T’ and launch it on X1; // fork
 recursively solve X2;
 wait until T’ is done; // join
 combine the solutions for X1 and X2
 into a solution for X;

}

T

T’

37
Java and C# in depth

Fork/join parallelism
Java 7 introduced a library for fork/join parallelism (in
java.util.concurrent).

ForkJoinPool is a specialized executor service, which
handles tasks that can fork and join. Its main purpose is
making sure that no thread is idle (“work stealing” schedule).

RecursiveAction and RecursiveTask<T> are the two
main abstract classes to define tasks that can fork and join.

§  RecursiveAction for tasks that don’t return any
value.

§  RecursiveTask<T> for tasks that return values of type
T.

§  Inherit and override T compute() to implement specific
tasks (T is void for RecursiveAction).

38
Java and C# in depth

Fork/join parallelism

Main methods of RecursiveAction and
RecursiveTask<T> (T is void for RecursiveAction):

§  fork(): schedule task for asynchronous parallel
execution.

§  T join(): await for task termination and return result.
§  T invoke(): arrange parallel execution, await for

termination, and return result.
§  invokeAll(Collection<T> tasks): spawn multiple

tasks and wait for all of them to terminate (works on
tasks in the collection passed as argument).

39
Java and C# in depth

Fork/join parallelism: example

Divide and conquer algorithm to sum the content of an array:
1.  If the array is small, iterate over its values.
2.  Otherwise, split it in two, sum the two halves in parallel,

and then combine the two partial sums.

public class ParSum extends RecursiveTask<Integer> {
 int [] values; // values to be summed
 int low, high; // range to be summed

 public ParSum (int [] values, int low, int high) {

 this.values = values;
 this.low = low; this.high = high;

 }

40
Java and C# in depth

Fork/join parallelism: example (cont’d)
public class ParSum extends RecursiveTask<Integer> {
 int [] values; // values to be summed
 int low, high; // range to be summed

 // is the range “small”?
 protected boolean isSmall() {

 return (high - low + 1 < 4);
 }

 // compute sum directly
 protected int computeDirectly() {

 int sum = 0;
 for (int i = low, i <= high; i++)
 sum += values[i];
 return sum;

 }

41
Java and C# in depth

Fork/join parallelism: example (cont’d)
 @Override
 protected Integer compute() {

 if (isSmall()) {
 // directly compute small instances
 return computeDirectly();
 } else {
 // split into two halves
 // note: what’s wrong with (low+high)/2?
 int mid = low + (high - low + 1)/2;
 ParSum t1 = new ParSum(values, low, mid);
 t1.fork(); // fork a thread on lower half
 low = mid + 1; // current thread on upper half
 // overall result: upper sum + lower sum
 return compute() + t1.join();
 }

 }

42
Java and C# in depth

Fork/join parallelism: example (cont’d)
How to start the parallel computation and get the result:

 int [] data = ... ; // get data, somehow
 ParSum sum = new ParSum(data, 0, data.length-1);
 ForkJoinPool pool = new ForkJoinPool();
 int total = pool.invoke(sum);
 System.out.println (“The sum is ” + total);

