
Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

C#: concurrency

2
Java and C# in depth

Outline

§  C# threads
§  thread implementation
§  sleep and join
§  threads that return values

§  Thread synchronization
§  implicit locks and synchronized blocks
§  producer/consumer example

§  More efficient concurrency
§  thread pools
§  atomic integers

§  Other concurrency models
§  asynchronous programming
§  polyphonic C#

Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

C# threads

4
Java and C# in depth

C# threads

C#’s concurrency model is based on threads

Threads are created by instantiating class Thread
§  The constructor takes a ThreadStart delegate that

wraps the method which the thread will execute

Any method can be called with the delegate mechanism
§  Unlike Java, any existing class can be used for multi-

threaded execution without modifications

In all the examples, assume
 using System; using System.Threading;

5
Java and C# in depth

A simple class (to be threaded)

public class DumbClass {

 private String id;

 public DumbClass(String id) {
 this.id = id;
 }

 public void print_id() {
 // do something
 Console.WriteLine("This is " + id);
 }

}

6
Java and C# in depth

Creating and starting a thread
Create the object with the method the thread will execute
DumbClass db = new DumbClass(“db”);

Create a Thread object and pass method print_id to is
using a ThreadStart delegate
 Thread mt = new Thread(

 new ThreadStart(db.print_id));
Start the thread
 mt.Start();

Optionally, wait for it to terminate
 mt.Join(); // wait until mt terminates

 Console.WriteLine(
 "The thread has terminated");

7
Java and C# in depth

Putting a thread to sleep

The Sleep(int t) static method suspends the thread in
which it is invoked for t milliseconds

 Thread.Sleep(2000); // suspend for 2 seconds

§  the timing may be more or less precise according to the
real-time guarantees of the executing environment

8
Java and C# in depth

Threads that return values
Threads can return values using additional delegates

§  E.g., to have threads that return strings declare a delegate type:
 public delegate void delForStrings(String s);

§  A class stores a reference to the delegate and activates it when
appropriate (to pass values to the caller)

public class DullClass {
 private String id;
 // delegate used to return a value when terminating
 private delForStrings d;
 // the constructor must bind the actual method
 public DullClass(String id, delForStrings d)

 { this.id = id; this.d = d; }
 public void give_id() {
 // call the delegate to return the value id
 if (d != null) { d(id); }
 }}

9
Java and C# in depth

Creating threads that return values

Define a method to process the information returned by the
thread (its signature matches the delegate’s)

§  for simplicity, we make it static
 public static void printValueSent(String

s) {
 Console.WriteLine(“The thread sent: “ + s);
 }

Create the object with the method the thread will execute and
pass the delegate to it
 DullClass dl = new DullClass(“dl”,

 new delForString(printValueSent));

10
Java and C# in depth

Creating threads that return values

Create a Thread object and pass method give_id to is
using a ThreadStart delegate
 Thread t = new Thread(

 new ThreadStart(dl.give_id));

Start the thread
 t.Start();

After executing, it will invoke printValueSent through the
delegate, which will print the given id

Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Thread synchronization

12
Java and C# in depth

Synchronization with locks
The lock statement supports synchronization based on locks

§  blocks of statements guarded by lock(o)

§  the lock o itself can be any object (including this)

§  locking/unlocking is implicit when entering/exiting the
block

§  useful to define critical regions and fine-grained
synchronization

§  monitors are implemented by locking the whole method
body on this

13
Java and C# in depth

Synchronization with locks

The lock statement supports synchronization based on locks

// s must be accessed in mutual exclusion
private int s;

// dict is a read-only object, no concurrency problems
private List<String> dict;

public String decrement_and_lookup() {
 // critical region
 lock(this) { if (s > 0) { s = s - 1; } }
 // non-critical region
 return dict.Item(s);

}

14
Java and C# in depth

Coordination with signals

Locked threads can communicate with signals, implemented
as static methods of class Monitor:
§  Monitor.Wait(o): suspend and release the lock on o

until some thread does a Pulse(o) or PulseAll(o)
§  Monitor.Pulse(o): resume one suspended thread

(chosen nondeterministically) waiting on object o, which
becomes ready for execution when possible

§  Monitor.PulseAll(o): resume all suspended
threads waiting on object o, which become ready for
execution when possible

§  Analogues of Java’s wait, notify, notifyAll

15
Java and C# in depth

Coordination with events

A more fine-grained (and possibly efficient) coordination uses
services of the WaitHandle class to coordinate threads

Coordination events are in one of two states: signaled and
unsignaled

§  Method Set puts an event in the signaled state
§  that is, it issues the signal

§  Method Reset puts an event in the unsignaled state
§  that is, it cancels the signal

16
Java and C# in depth

Coordination with events
A more fine-grained (and possibly efficient) coordination uses

services of the WaitHandle class to coordinate threads

Two main classes implement coordination events

§  AutoResetEvent
§  automatically resets to unsignaled after being received by

one of the waiting threads
§  ManualResetEvent

§  does not automatically reset, hence it can be received by
more than one waiting thread

§  can be reset with method Reset()

17
Java and C# in depth

Coordination with events
Use services of the WaitHandle class to coordinate threads
A thread can block waiting for an event using some methods of
the class

§  WaitHandle.WaitOne() waits for the event to be
signaled (and blocks until then)

§  static WaitHandle.WaitAny(WaitHandle[] e)
waits for any of the events in array e.
§  The method returns when an event is received
§  It returns an integer i, which is an index within array e
§  e[i] is the event that has been received

§  static WaitHandle.WaitAll(WaitHandle[] e)
waits for all the events in array e to be signaled.

Unlike Monitor.Wait, if these wait primitives occur in a lock
block they do not release the lock while waiting.

18
Java and C# in depth

The producer-consumer problem

Two threads, the Producer and the Consumer, work
concurrently on a shared Buffer of bounded size
The Producer puts new messages in the buffer

§  if the buffer is full, the Producer must wait until the
Consumer takes some messages

§  the Producer also signals the last message
The Consumer takes messages from the buffer

§  if the buffer is empty, the Consumer must wait until the
Producer puts some new messages

§  the Consumer terminates after the last message
Consistent access to the Buffer requires locks and
synchronization
One way is to define critical regions when accessing the buffer
data structure (with lock) and signal events

19
Java and C# in depth

The main class
public class ProducerConsumer {

 public static void main(String[] args) {
 // create a synchronizer object
 Synchronizer s = new Synchronizer();
 // create a buffer of size 3
 Buffer b = new Buffer(3, s);
 // create producer and consumer
 Producer p = new Producer(b, s);
 Consumer c = new Consumer(b, s);
 // instantiate threads
 Thread pT = new Thread(p.produce);
 Thread cT = new Thread(c.consume);
 // start them
 pT.Start(); cT.Start();

}

20
Java and C# in depth

Events for synchronization (1/2)
using System; using System.Threading;
using System.Collections;
using System.Collections.Generic;

public class Synchronizer {
 private EventWaitHandle takeEvent;
 public EventWaitHandle TakeEvent

 { get { return takeEvent; } }

 private EventWaitHandle giveEvent;
 public EventWaitHandle GiveEvent

 { get { return giveEvent; } }

 private EventWaitHandle endEvent;
 public EventWaitHandle EndEvent

 { get { return endEvent; } }

21
Java and C# in depth

Events for synchronization (2/2)

 public Synchronizer() {
 // events initialized to unsignaled state
 takeEvent = new AutoResetEvent(false);
 giveEvent = new AutoResetEvent(false);
 endEvent = new ManualResetEvent(false);
 }

}

§  takeEvent is an AutoResetEvent so it is received by exactly one

waiting thread among all those waiting for a take to happen.
§  giveEvent is an AutoResetEvent so it is received by exactly one

waiting thread among all those waiting for a give to happen.
§  endEvent is a ManualResetEvent so it is received by all waiting

threads: they will all be notified that they can terminate.

22
Java and C# in depth

The shared Buffer (1/3)
public class Buffer {

 public Buffer(int max_size, Synchronizer s) {
 this.max_size = max_size;
 this.messages = new Queue<String>();
 this.s = s;
 }
 // buffer of messages, managed as a queue
 private Queue<String> messages;
 // maximum number of elements in the buffer
 private int max_size;
 // reference to events for synchronization
 private Synchronizer s;

23
Java and C# in depth

The shared Buffer (2/3)
 public String take() {
 if (messages.Count == 0) {

 // only one thread receives the event
 WaitHandle.WaitAny(
 // wait until a give occurs
 new WaitHandle[] {s.GiveEvent});
 }
 // now the buffer is not empty
 lock(this) {
 m = messages.Dequeue();
 }
 // signal that a take has occurred
 s.TakeEvent.Set();
 return m;
 }

24
Java and C# in depth

The shared Buffer (3/3)

 public void give(String msg) {
 if (messages.Count == max_size) {
 // only one thread receives the event
 WaitHandle.WaitAny(
 // wait until a take occurs
 new WaitHandle[] {s.TakeEvent});
 }
 // now the buffer has at least an available slot
 lock(this) {
 messages.Enqueue(msg);
 }
 // signal that a give has occurred
 s.GiveEvent.Set();

 }
}

25
Java and C# in depth

The Producer (1/2)

public class Producer {

 // a reference to the shared buffer
 private Buffer b;

 // events to synchronize on

 private Synchronizer s;

 // set the reference to the buffer and synchronizer
 public Producer(Buffer b, Synchronizer s) {
 this.b = b;
 this.s = s;

 }

26
Java and C# in depth

The Producer (2/2)

 public void produce() {

 // work for 20 turns
 for (int i = 0; i < 20; i++) {
 // put a message in the buffer

 b.give(i.ToString());
 }
 // signal that production has ended
 s.EndEvent.Set();
 }

}

27
Java and C# in depth

The Consumer (1/2)

public class Consumer {

 // a reference to the shared buffer
 private Buffer b;

 // events to synchronize on

 private Synchronizer s;

 // set the reference to the buffer and synchronizer

 public Producer(Buffer b, Synchronizer s) {
 this.b = b;
 this.s = s;

 }

28
Java and C# in depth

The Consumer (2/2)

 public void consume() {
 // loop as new events arrive, until:
 // EndEvent is signaled AND b is empty
 while (WaitHandle.WaitAny(new WaitHandle[]

 {s.GiveEvent, s.EndEvent}) != 1
 || !b.Empty) {
 string m = b.take();
 Console.WriteLine(
 "Consumer has consumed message " + m);
 }

 }

}

Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

More efficient concurrency

30
Java and C# in depth

Concurrency and performance

Thread creation is time-consuming
§  massive thread creation can annihilate responsiveness
§  C#’s solution: thread pools

Lower-level primitives are available

§  Mutex class for mutexes
§  less efficient than monitors and lock (unlike Java)

§  Interlocked static class
§  atomic operations on integers

Tip: don’t forget the efficiency/abstraction trade-off

31
Java and C# in depth

Thread pools
Thread pools are an efficient way of running multi-threaded
applications

§  maintain a pool of worker threads
§  when a client requests a new task to run, preempt one of

the available worker threads and assign it to the task
§  no creation overhead upon task invocation

C#’s static class System.Threading.ThreadPool
§  QueueUserWorkItem(WaitCallback w,Object o):

schedule delegate w for execution by a worker thread,
when possible; o is passed as argument to w.

32
Java and C# in depth

Thread pool thread creation

Create a wrapper delegate for each method to be threaded
§  In the Producer/Consumer example:
 public static void Main(string[] args) {
 Producer p = new Producer(b, s);
 Consumer c = new Consumer(b, s);
 ThreadPool.QueueUserWorkItem(new
 WaitCallback(consuming), c);
 ThreadPool.QueueUserWorkItem(new
 WaitCallback(producing), p);
 }
 public static void consuming(object o)
 { ((Consumer) o).consume(); }
 public static void producing(object o)
 { ((Producer) o).produce(); }

There’s an undesirable side-effect with this code as is.
What is it?

33
Java and C# in depth

Thread pool thread creation

Create a wrapper delegate for each method to be threaded
§  In the Producer/Consumer example:
 public static void Main(string[] args) {
 Producer p = new Producer(b, s);
 Consumer c = new Consumer(b, s);
 ThreadPool.QueueUserWorkItem(new
 WaitCallback(consuming), c);
 ThreadPool.QueueUserWorkItem(new
 WaitCallback(producing), p);
 }

There’s an undesirable side-effect with this code as is.
What is it?

§  Main terminates after invoking QueueUserWorkItem;
hence the ThreadPool object is deallocated and the
worker threads forcefully terminated!

34
Java and C# in depth

Interlocked class

C#’s implementation of atomic operations on integers

// shared variable
int s;

...
// this is equivalent to an atomic s++
Interlocked.Increment(ref s);
...
// this is equivalent to an atomic s--
Interlocked.Decrement(ref s);

Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Other concurrency models:
Asynchronous programming

36
Java and C# in depth

Concurrency and correctness

Programming thread-safe data structures is error-prone
§  Thread-safe collections are available since C# 4.0
§  Current collections provide a SyncRoot object for

synchronization

Threads and monitors are too general for straightforward
parallel computation

§  C#’s solution: asynchronous methods

Tip: don’t forget the efficiency/abstraction trade-off

37
Java and C# in depth

Asynchronous programming

C# 5.0 introduced simple mechanisms to have methods
execute asynchronously and wait for one another.

The model is based on asynchronous methods:
 async Task<T> DoAsync()

§  DoAsync may execute asynchronously from its clients
§  In turn, its clients can wait for DoAsync’s to complete (and

only then access its result).

(The class Task can also be used independent of
asynchronous methods, mostly to introduce forms of data-
bound parallelism.)

38
Java and C# in depth

Asynchronous methods
 async Task<T> DoAsync()

Asynchronous methods:
§  Are declared as such with the keyword async
§  Can have only specific return types:
§  Task<T> for methods returning values of type T
§  Task for methods returning no values
§  void for methods returning no values used as event

handlers
§  Cannot have ref or out arguments (there’s no way to
“wait” for those)

§  By convention, have name ending in “Async”
§  Can wait for other asynchronous methods to complete using

the await instruction in their bodies.

39
Java and C# in depth

Waiting

 async Task<T> DoAsync()

When an asynchronous method DoAsync executes an
await:

§  Control may return to the caller (the compiler/runtime
decides if a context switch is worth the cost)

§  The caller will be able to retrieve the result later when
available, after awaiting

§  No new thread is created: the asynchronous computation
uses the thread executing DoAsync

The result obtained when awaiting for an asynchronous
method with return type Task<T> has type T.

40
Java and C# in depth

Asynchronous programming: example
Write a method AvgAgesAsync that computes the average age of
the population of several cities.

The data for each city is accessible remotely using a library method:
 async Task<List<int>> GetAgesAsync(String city)
A call return a list of ages, one for each person of the city.

Calls to AvgAgesAsync may take time, but can be executed
asynchronously:
1.  First, the client start the asynchronous computation:

 Task<double> t = AvgAgesAsync(listOfCities);
2.  Now, the client can do other stuff while AvgAgesAsync

executes in parallel.
3.  Eventually, the client will get the final results with a call:
 double avg = await t;

41
Java and C# in depth

Asynchronous programming: example
async Task<double> AvgAgesAsync (List<String> cities)
{
 int i = 0, pop = 0; double avg = 0;
 foreach (String c in cities) {

 // wait for results from GetAgesAsync
 // (but AvgAgesAsync’s caller needn’t block)
 List<int> v = await GetAgesAsync(c);

 avg = // new average, from old one
 ((avg*pop) + v.Sum()) / (pop + v.Count);

 pop += v.Count; // new total population
 i++; // one more city done
 Console.WriteLine(
 “Done {0}% of cities. Current average: {1}”,

 (i/cities.Count*100), avg);
 } return avg;
}

Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Other concurrency models:
Polyphonic C#

43
Java and C# in depth

Introducing Polyphonic C#
§  Polyphonic C# is an extension of C# with a few high-level

primitives for concurrency
§  not part of .NET framework
§  based on join calculus (Fournet & Gonthier, 1996)
§  taken up by Microsoft’s Cω project
§  JoinJava is a similar extension for Java

§  Based on two basic notions
§  Asynchronous methods
§  Chords (M. Mussorgsky, Pictures at an exhibition)

44
Java and C# in depth

Polyphonic asynchronous methods

Calls to asynchronous methods return immediately without
returning any result
§  The callee is scheduled for execution in a different

thread
§  similar to sending a message or raising an event
§  declared using async keyword instead of void

public async startComputation () {
 // computation
}
§  asynchronous methods do not return any value and

cannot have ref or out arguments

45
Java and C# in depth

Chords: syntax

A chord is an extension of the notion of method definition
§  The signature of a chord is a collection of (traditional)

method declarations joined by &
§  The body of a chord is all similar to the body of a

traditional method
 public int get() & public async put(int i) {

 return i;
 }

§  Within a chord:
§  at most one method can be non-asynchronous

§  Within a class:
§  the same method can appear in more than one chord

§  (We do not discuss additional rules for inheritance and
overloading)

46
Java and C# in depth

Chords: semantics

A chord is only executed once all the methods in its signature
have been called

§  Calls are buffered until there is a matching chord

§  the implicit buffer supports complex synchronization
patterns with little code (see Producer/Consumer later)

§  If multiple matches are possible, nondeterminism applies

§  Execution returns a value to the only non-asynchronous
method in the chord (if any)

47
Java and C# in depth

Chords semantics: example

public class Buffer() {
 public int get() & public async put(int i)

 { return i; }
}
...
Buffer b = new Buffer();
b.put(“okey”)
Console.WriteLine(b.get()); // prints “okey”
b.put(“okey”); b.put(“dokey”);
 // prints “okeydokey” or “dokeyokey”

Console.WriteLine(b.get() + b.get());
b.get(); // blocks until some other thread calls put

48
Java and C# in depth

Producer/Consumer with chords (1/3)

public class Buffer {

 public void give(String s) & async available(int a) {
 if (a == 1) {
// just one slot available and giving: become full

 full();
 } else {
 // more than one slot available and giving:
 // enable more giving
 available(a – 1);
 }
 // buffer message for takes
 inBuffer(s);
 }

49
Java and C# in depth

Producer/Consumer with chords (2/3)

 public String take() & async inBuffer(String s) &
 async full() {

 // full and taking: one slot becomes available
 available(1);
 // return message in queue
 return s;
 }

 public String take() & async inBuffer(String s) &

 async available(int a) {
 // not full: one more slot becomes available
 available(a + 1);
 // return message in queue
 return s;
 }

50
Java and C# in depth

Producer/Consumer with chords (3/3)

 // constructor
 public Buffer(int capacity) {
 available(capacity);
 }

}

Note: unlike in the examples we developed with locks, here there is no
guarantee of ordered retrieval because any message in the implicit buffer
can be retrieved at any time

