
Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Java: Persistence

2
Java and C# in depth

Outline

§  Java Serialization

§  Connecting to a Relational Database Management
System (RDBMS) with Java Database Connectivity API
(JDBC)

§  Object-Relational Mappers (ORM) and Data Mappers

§  Object-Oriented Data Base Management Systems

(OODBMS)

3
Java and C# in depth

Java Serialization

4
Java and C# in depth

Java Binary Serialization

§  Objects are stored in a file together with their object graph
and can be retrieved from compatible class versions

§  Your custom objects need to implement either
Serializable or Externalizable

§  static and transient fields will not be serialized

5
Java and C# in depth

Writing and reading objects

§  Write objects to a FileOutputStream using method
writeObject in ObjectOutputStream

§  Read objects from a FileInputStream using method
readObject in ObjectInputStream

§  Write primitive data types using methods in interface
DataOutput

§  Read primitive data types using methods in interface
DataInput

§  Write bytes and arrays of bytes using OutputStream
§  Read bytes and arrays of bytes using InputStream

6
Java and C# in depth

Java Binary Serialization example

class ClassA implements Serializable
{

private int field1;
private ClassB field2;
private transient String field3;
...

}

7
Java and C# in depth

Sample serialization

class ClientClass
{

public void serialize(Serializable target)
{ //exception handling omitted
 FileOutputStream os = new
FileOutputStream(“fileName”);
 ObjectOutput oo = new
ObjectOutputStream(os);
 oo.writeObject(target);
 oo.close();
}}

8
Java and C# in depth

Sample deserialization

class ClientClass
{

public Object deserialize()
{//exception handling omitted
 FileInputStream is = new
FileInputStream(“fileName”);
 ObjectInputStream oi = new
ObjectInputStream(is);
 ClassA obj = (ClassA)oi.readObject();
 oi.close();
 return obj;
}}

9
Java and C# in depth

Serializable vs Externalizable

§  The serialization mechanism triggered by implementing
Serializable uses reflection. In early versions of Java
this created performance issues on large objects

§  For efficiency you can use e.g. JBoss serialization
library: http://www.jboss.org/serialization

§  You can fully customize the serialization mechanism by
implementing the Externalizable interface

§  Externalizable delegates to the class complete
control over the storable external format by asking you to
implement writeExternal and readExternal

10
Java and C# in depth

A deceivingly simple choice

§  Implementing the Serializable interface is a strong
design choice, because it makes the class instances
persistent forever

§  The class implementation (e.g. the private fields) is
now part of the default serialized form, that is, part of the
class API

§  Descendants and supplier classes (e.g. ClassB) need to

be Serializable as well

11
Java and C# in depth

The serial version UID

§  Every Serializable class has a unique identification
number associated with it, the serial version UID

	
private static final long serialVersionUID

§  This requirement is in place to prevent accidentally
evolved classes

§  If we don’t provide this constant field and the associated
value, the compiler warns us. This is a warning it is not
safe to ignore

12
Java and C# in depth

Handling the serial Version UID value

Choice 1: accept the default generated UID
§  Just choose the option of generating one when using

Eclipse or simply ignore the compiler warning
§  Most of the changes in the class structure will now

trigger a mismatch (InvalidClassException)

Choice 2: provide a custom value
§  Adding an attribute will now cause no exception
§  The added attribute will be initialized to its default value

13
Java and C# in depth

Providing a custom serialized form

§  Implement Serializable providing your own version UID

§  Replace the default serialization mechanism using the
following callback methods in your class:

	
private void writeObject(ObjectOutputStream s)
	
private void readObject(ObjectInputStream s)

§  Invoke the default serialization mechanism from their

bodies with
s.defaultWriteObject() and
s.defaultReadObject()

14
Java and C# in depth

Deserialization and schema evolution

Deserialization is an extra-linguistic mechanism to create
objects

§ Object have to be reconstructed without using constructors
§  Possible security issues
§  Possible correctness issues (class invariant violations)

Beware of “transparent schema evolution” claims
§  Providing a default value to a newly added attribute when

reading an object of an old version can be wrong
§  Use readObject to re-establish the class invariant

15
Java and C# in depth

Connecting to a
Relational Database Management

System (RDBMS)
with

Java Data Base Connectivity API (JDBC)

16
Java and C# in depth

Java Data Base Connectivity API!

JDBC ODBC
Bridge Driver

RDBMS

J

D

B

C

A

P

I

Java

 code

 + SQL
JDBC

Driver

17
Java and C# in depth

What is a Relational DB in one slide!

A collection of relations (tables)

Each relation is defined as a set of tuples (rows) having the

same attributes (columns)

Each tuple (row) represents an object together with the related

information about it

Each attribute (column) references data in the same domain

Data are accessed in a declarative way, specifying queries

18
Java and C# in depth

A sample table: CUSTOMERS!

Customer_id Customer_
name

Customer_
country

Customer_data

123 Reto Switzerland 100000

132 Cecilia Italy 300000
213 Hauke Germany 200000

231 Nadia Russia 400000
312 Yu China 500000

321 Viswanathan India 600000

19
Java and C# in depth

Step 1: loading a driver!

§  DriverManager is the basic class for managing a set of
JDBC drivers

§  The following loads and creates an instance of a driver
and registers it with the DriverManager

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”)

§  How can all this happen with just one instruction?

20
Java and C# in depth

Step 2: getting a connection

§  java.sql.DriverManager provides a connection to
the DB

§  The connection object will communicate with the DB

Connection con = DriverManager.getConnection
(“jdbc:odbc:MyDSN”, “aLogin”, ”aPassword”);

§  Here the code just knows about the DSN (Data Set
Name) which is in turn mapped to the real database
name outside the application
§  In Windows via Control Panel (ODBC Data Source)
§  In Mac OS X via ODBC administrator
§  In Linux updating “.odbc.ini”

21
Java and C# in depth

Other ways to get a connection

§  The example just seen used ODBC and DSN
Connection con = DriverManager.getConnection
(“jdbc:odbc:MyDSN”, “aLogin”, ”aPassword”);

§  We can also use ODBC without DSN
Connection con = DriverManager.getConnection
(“jdbc:odbc:Driver=...”);

§  Or a pure JDBC driver

Connection con = DriverManager.getConnection
(“jdbc:aConnectionString;Login;Password”);

22
Java and C# in depth

Connecting via a DataSource object

§  The most common option in J2EE (Java 2 Enterprise
Edition) applications

§  A factory for connections to the physical data source

§  Handles connection life-cycle through connection pooling

§  An object that implements the DataSource interface will
typically be registered with a naming service based on
the Java Naming and Directory Interface (JNDI) API

§  Implemented by each driver vendor

23
Java and C# in depth

Step 3: statements, queries, updates

§  A java.sql.Statement object encapsulates an SQL
statement

Statement stmt = con.createStatement();

§  SQL update, insert or delete use the same command

stmt.executeUpdate(“INSERT INTO CUSTOMERS
VALUES (“0123”,“Scott”,“Canada”, 700000)”);

§  Simple SQL query

stmt.executeQuery(“SELECT * FROM CUSTOMERS;”);

24
Java and C# in depth

CUSTOMERS table after insertion!

Customer_id Customer_
name

Customer_c
ountry

Customer_data

1230 Reto Switzerland 100000

1320 Cecilia Italy 300000

2130 Hauke Germany 200000

2310 Nadia Russia 400000

3120 Yu China 500000

3210 Viswanathan India 600000

0123 Scott Canada 700000

25
Java and C# in depth

Step 4: handling a query result set

§  executeQuery() returns a java.sql.ResultSet
object

	
ResultSet rs = stmt.executeQuery(“SELECT…”);

§  The ResultSet object will be used to iterate through
the result
§ Method next()moves the cursor to the next row, and

returns false when there are no more rows
§  There are getter methods (getBoolean(),
getLong(), etc.) for retrieving column values from the
current row

26
Java and C# in depth

Step 5: cleaning up

§  Even if using a DataSource connection pooling,
remember to explicitly destroy the connection objects
after finished

...	
// Also closes the result set
stmt.close();
// Very important!!!
con.close();
...	
§  How can you be sure that a connection is always

closed?

27
Java and C# in depth

Step 5: cleaning up in Java 7

try(Connection c = getConnection(…)) {
	try (Statement s = c.prepareStatement(…)){
 // work with PreparedStatement
 c.commit;
 } catch (SQLException e){
		 	// handle exception
 c.rollback();
 // maybe re-throw, or
 //wrap exception and then re-throw
 ...	
 }}
	

28
Java and C# in depth

Possible issues with sql statements

Across different DBMS
§  Strings quoting may be different
§  Code gets bloated with ugly string concatenations

String query = "Select * from Customers where
" + " customer_id = \"" + id + "\"" +

 " and customer_country = \"" + country +
"\”“ + ” and customer_data > “ + data + ”;“;

Characters that create conflicts are escaped with a backslash

(e.g.: \“)

29
Java and C# in depth

Prepared statements

Encapsulated, pre-compiled queries
§  More readable, more portable
§  Favor query optimization

String SQL = “select * from Customers where
customer_id = ? and customer_country = ? and
customer_data > ?”;

PreparedStatement pstmt =
con.prepareStatement(SQL);

pstmt.setString(1,id);
pstmt.setString(2,country);
pstmt.setInt(3,data);
pstmt.executeQuery();

30
Java and C# in depth

Issues with JDBC

§  JDBC is a good, but quite low level API

§  It requires effort on the developer’s side to write and
maintain glue code
§  Loading and registering drivers
§  Handling connections
§  Handling exceptions (JDBC API provides only a few)
§  Handling Create, Read, Update, and Delete (CRUD)

operations in a standard way

§  It’s better to use a good framework to handle all this

31
Java and C# in depth

Spring JDBC

Spring is the leading open source framework for J2EE
applications. Supports JDBC by providing:

§  Configurable classes implementing
javax.sql.DataSource

§  Many useful runtime exceptions, mapped to db-specific
errors by an SQLExceptionTranslator

§  Classes like JDBCTemplate to handle the core workflow

§  Developers only need to implement callback interfaces to
handle the mapping

32
Java and C# in depth

Object-Relational Mappers (ORM)

and
Data Mappers

33
Java and C# in depth

Object-relational impedance mismatch

§  Object oriented applications and relational databases
implement different mathematical models

§  A mapping layer is therefore necessary to represent
objects as tables and vice versa

§  Mapping objects to tables may be difficult and error
prone

§  From here stems the idea of ORM’s and data mappers

34
Java and C# in depth

ORM: Object Relational Mappers

§  Mapping is handled in configuration files, or automatic

§  Use SQL or ad hoc object query languages

§  Have different, pluggable caching strategies

§  Automatically detect updated objects and persist them

§  Examples: Hibernate (Java and .NET), JPA (Java

Persistence API)

35
Java and C# in depth

ORM: when they are a good choice

§  Typical load-edit-store workflows

§  In need of occasional queries over big sets (SQL Unions)
with single updates or deletes

§  Read-mostly scenarios (web-like)

§  Natural mapping between objects and tables
§  For example when there are flat object structures

36
Java and C# in depth

ORM: when they are questionable

§  Lots of set accesses (SQL Unions)

§  Lots of aggregate functions
§  AVG, COUNT, MAX, MIN, SUM

§  Lots of batch updates on multiple lines

§  In need of specific SQL optimization
§  In presence of deep and/or recursive object structures

37
Java and C# in depth

Data Mappers

§  Think about them as lightweight ORM’s

§  Provide support for caching query results

§  SQL and mappings are externalized in configuration files

§  No automatic conversion of values to/from db

§  No automatic updates of modified objects

§  Example: MyBatis

38
Java and C# in depth

Object-Oriented Data Base

Management Systems
(OODBMS)

39
Java and C# in depth

OODBMS

Offer more functionalities than object serialization
§  ACID Transactions (see next slide)
§  Queries

Will probably replace serialization in the long run

Examples: Versant db4objects, McObject Perst

§ Open source, available for both Java and .NET
§  Small memory footprint, good to embed
§  Easy to use

40
Java and C# in depth

Database transactions ACID properties

Atomicity
§  Either all the tasks of a transaction are executed

correctly (commit), or none (rollback)
Consistency

§  The database remains in a consistent state before and
after the transaction

Isolation
§  Data involved in a transaction are isolated from outside

§  Data in an intermediate state cannot be seen from outside
the transaction

Durability
§  Once committed, a transaction will survive also system

failure

41
Java and C# in depth

Storing an object with db4o

Suppose Deck is a “pure” business class
§  Not “polluted” with persistence code
§  Does not implement or extend anything
	
public void store(Deck aDeck)
{
 ObjectContainer db =
Db4o.openFile(“myDb.yap”);
 db.store(aDeck);
 db.commit();
 db.close();
}

42
Java and C# in depth

Querying for objects

The most interesting approach uses native queries

§  Use Java to query for objects

§  Different constraints on objects are possible

§  Inherently type safe (compile-time checks)

43
Java and C# in depth

Db4o native query example

...

public void testQuery()
{
 List<Student> result = objContainer.query(
 new Predicate<Student>() {
 public boolean match(Student stu) {
 return stu.getTopMark() == 6;
 }
 });
...

